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Abstract

Fog computing is an emerging computing paradigm that
uses processing and storage capabilities located at the
edge, in the cloud, and possibly in between. Testing and
benchmarking fog applications, however, is hard since run-
time infrastructure will typically be in use or may not
exist, yet. While approaches for the emulation of infras-
tructure testbeds do exist, their focus is typically the em-
ulation of edge devices. Other approaches also emulate
infrastructure within the core network or the cloud, but
they miss support for automated experiment orchestra-
tion.

In this paper, we propose to evaluate fog applications
on an emulated infrastructure testbed created in the cloud
which can be manipulated based on a pre-defined orches-
tration schedule. Developers can freely design the in-
frastructure, configure performance characteristics, man-
age application components, and orchestrate their exper-
iments. We also present our proof-of-concept implemen-
tation MockFog 2.0. We use MockFog 2.0 to evaluate a
fog-based smart factory application and showcase how its
features can be used to study the impact of infrastructure
changes and workload variations. With these experiments,
we also show that MockFog can achieve good experiment
reproducibility, even in a public cloud environment.

1 Introduction

Fog computing is an emerging computing paradigm that
promises to combine the benefits of edge computing and
cloud computing [8, 31]. For low latency, application com-
ponents are deployed close to or near the edge, i.e., close
to end users. This can also reduce bandwidth consump-
tion, mitigate privacy risks, and enable the edge to keep
operating in the presence of network partitions. For high
scalability, application components can leverage stronger
machines such as cloudlets [50] within the core network [8]
or run directly in the cloud. This encompassing execution
environment is commonly referred to as fog [8, 9] and com-
prises all devices along the “cloud-to-thing continuum”[36].
However, even though fog computing has many advan-
tages, there are currently only a few fog applications and

∗This work has been published in IEEE Transactions on Cloud
Computing. ©2021 IEEE.

“commercial deployments are yet to take off” [57]. Ar-
guably, the main adoption barrier is the deployment and
management of physical infrastructure, particularly at the
edge, which is in stark contrast to the ease of adoption in
the cloud [8].

In the lifecycle of a fog application, this is not only a
problem when running and operating a production system
– it is also a challenge in application testing: While basic
design questions can be decided using simulation, e.g., [10,
17, 20], there comes a point when a new application needs
to be tested in practice. The physical fog infrastructure,
however, will typically be available for a very brief time
only: in between having finished the physical deployment
of devices and before going live. Before that period, the in-
frastructure presumably does not exist and afterwards its
full capacity is used in production. Without an infrastruc-
ture to run more complex integration tests or benchmarks,
e.g., for fault-tolerance in wide area deployments, however,
the application developer is left with guesses, (very small)
local testbeds, and simulation. While approaches for the
emulation of infrastructure testbeds exist, they typically
focus on emulating edge devices, e.g., [22, 44]. Other ap-
proaches also emulate infrastructure within the core net-
work or the cloud, but they miss support for automated
experiment orchestration, e.g., [12, 32].

In this paper, we extend our preliminary work pre-
sented in [21]. We propose to evaluate fog applications on
an emulated infrastructure testbed created in the cloud
which can be manipulated based on a pre-defined orches-
tration schedule. In an emulated fog environment, vir-
tual cloud machines are configured to closely mimic the
real (or planned) fog infrastructure. By using basic infor-
mation on network characteristics, either obtained from
the production environment or based on expectations and
experiences with other applications, interconnections be-
tween the emulated fog machines can be manipulated to
show similar characteristics. Likewise, performance mea-
surements from real fog machines can be used to deter-
mine resource limits on Dockerized1 application contain-
ers2. This way, fog applications can be fully deployed in
the cloud while experiencing comparable performance and
failure characteristics as a real fog deployment.

Using an emulated infrastructure also makes it possible

1https://docker.com
2When benchmarking Dockerized applications, developers need

to account for Dockerization impacts [15, 16].
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to change machine and network characteristics, as well as
the workload used during application testing at runtime
based on an orchestration schedule. For example, this
makes it possible to evaluate the impact of sudden ma-
chine failures or unreliable network connections as part of
a system test with varying load. While testing in an emu-
lated fog will never be as “good” as in a real production fog
environment, it is certainly better than simulation-based
evaluation only. Moreover, it allows application engineers
to test arbitrary failure scenarios and various infrastruc-
ture options at large scale, which is also not possible on
small local testbeds.

Thus, we make the following contributions:

• We describe the design of MockFog, a system that
can emulate fog computing infrastructure in arbitrary
cloud environments, manage applications, and orches-
trate experiments integrated into a typical application
engineering process.

• We present our proof-of-concept implementation
MockFog 2.0, the successor to the original proof-of-
concept implementation3.

• We demonstrate how MockFog 2.0 allows developers
to automate experiments that involve changing infras-
tructure and workload characteristics with an exam-
ple application.

The remainder of this paper is structured as follows: We
first describe the design of MockFog and discuss how it
is used within a typical application engineering process
(Section 2). Next, we evaluate our approach through a
proof-of-concept implementation (Section 3) and a set of
experiments with a smart-factory application using the
prototype (Section 4). Here, we also show that Mock-
Fog can achieve good experiment reproducibility, even in
a public cloud environment. Finally, we compare MockFog
to related work (Section 5) before a discussion (Section 6)
and conclusion (Section 7).

2 MockFog Design
In this section, we present the MockFog design, start-
ing with a high level overview of its three modules (Sec-
tion 2.1). Then, we discuss how to use Mockfog in a typ-
ical application engineering process (Section 2.2) before
describing each of the modules (Sections 2.3 to 2.5).

2.1 MockFog Overview
MockFog comprises three modules: the infrastructure em-
ulation module, the application management module, and
the experiment orchestration module (see Figure 1). For
the first module, developers model the properties of their
desired (emulated) fog infrastructure, namely the number
and kind of machines but also the properties of their in-
terconnections. The infrastructure emulation module uses
this configuration for the infrastructure bootstrapping and
infrastructure teardown. For the second module, devel-
opers define application containers and where to deploy
them. The application management module uses this con-
figuration for the application container deployment, the

3https://github.com/OpenFogStack/MockFog-Meta
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Figure 1: MockFog comprises three modules.
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Figure 2: Example: MockFog node manager, node agents,
and containerized application components (App).

collection of results, and the application shutdown. For
the third module, developers define an experiment orches-
tration schedule that includes infrastructure changes and
application instructions. The experiment orchestration
module uses this configuration to initiate infrastructure
changes or to signal load generators4 and the system un-
der test at runtime.

The implementation of all three modules is spread over
two main components: the node manager and the node
agents. There is only a single node manager instance in
each MockFog setup. It serves as the point of entry for
application developers and is, in general, their only way
of interacting with MockFog. In contrast, one node agent
instance runs on each of the cloud virtual machines (VMs)
used to emulate the fog infrastructure. Based on the node
manager’s input, node agents manipulate their respective
VM to show the desired machine and network character-
istics to the application.

Figure 2 shows an example with three VMs: two are em-
ulated edge machines, and one is a single “emulated” cloud
machine. In the example, the node manager instructs the
node agents to manipulate the network properties of their
VMs in such a way that an application appears to have
all its network traffic routed through the cloud VM. More-
over, the node agents ensure that network manipulations
do not affect communication to the node manager by using
a dedicated management network. Note that developers
can freely choose where to run the node manager, e.g., it
could run on a developer’s laptop or on another cloud VM.

4Requirements for load generators are highly application-specific
and also depend on usage purposes such as benchmarking or test-
ing. Since there is already a plethora of standard load generators,
benchmarks, and application-specific ad-hoc load generators, we do
not include a load generator in MockFog. Instead, we focus on inte-
grating and managing arbitrary load generators through MockFog’s
signaling and orchestration features.
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Figure 3: The three MockFog modules set up and manage
experiments during the application engineering process.

2.2 Using MockFog in Application Engi-
neering

A typical application engineering process starts with re-
quirements elicitation, followed by design, implementa-
tion, testing, and finally maintenance. In agile, contin-
uous integration and DevOps processes, these steps are
executed in short development cycles, often even in paral-
lel – with MockFog, we primarily target the testing phase.
Within the testing phase, a variety of tests could be run,
e.g., unit tests, integration tests, system tests, or accep-
tance tests [59] but also benchmarks to better understand
system quality levels of an application, e.g., performance,
fault-tolerance, data consistency [6]. Out of these tests,
unit tests tend to evaluate small isolated features only,
and acceptance tests are usually run on the production
infrastructure; often, involving a gradual roll-out process
with canary testing, A/B testing, and similar approaches,
e.g., [51]. For integration and system tests as well as
benchmarking, however, a dedicated test infrastructure is
required. With MockFog, we provide such an infrastruc-
ture for experiments.

We imagine that developers integrate MockFog into
their deployment pipeline (see Figure 3) and use it with
their existing continuous integration and deployment tool-
ing. Once a new version of the application has passed all
unit tests, MockFog can be used to set up and manage
experiments. For the MockFog setup, a developer only
needs to provide configuration files for the three MockFog
modules, which we describe in more detail below. We pro-
vide the configuration files used within our evaluation in
Section 4.

2.3 Infrastructure Emulation Module

A typical fog infrastructure comprises several fog ma-
chines, i.e., edge machines, cloud machines, and possi-
bly also machines within the network between edge and
cloud [8]. If no physical infrastructure exists yet, devel-
opers can follow guidelines, best practices or reference ar-
chitectures such as proposed in [26, 39, 45, 47, 48]. On
an abstract level, the infrastructure can be described as a
graph comprising machines as vertices and the network be-

tween machines as edges [25]. In this graph, machines and
network connections can also have properties such as the
compute power of a machine or the available bandwidth
of a connection. For the infrastructure emulation module,
the developer specifies such an abstract graph before as-
signing properties to vertices and edges. We describe the
machine and network properties supported by MockFog in
Section 2.3.1 and Section 2.3.2.

During the infrastructure bootstrapping step (see Fig-
ure 3), the node manager connects to the respective cloud
service provider to set up a single VM in the cloud for each
fog machine in the infrastructure model. VM type selec-
tion is straightforward when the cloud service provider
accepts the machine properties as input directly, e.g., on
Google Compute Engine. If not, e.g., on AWS EC2, the
mapping selects the smallest VM that still fulfills the indi-
vidual machine requirements. MockFog then hides surplus
resources by limiting resources for the containers directly.
When all machines have been set up, the node manager
installs the node agent on each VM, which will later ma-
nipulate its VM’s machine and network characteristics.

Once the infrastructure bootstrapping has been com-
pleted, the developer continues with the application man-
agement module. Furthermore, MockFog provides IP ad-
dresses and access credentials for the emulated fog ma-
chines. With these, the developer can establish direct
SSH connections, use customized deployment tooling, or
manage machines with the cloud service provider’s APIs
if needed.

Once all experiments have been completed, the devel-
oper can also use the infrastructure emulation module to
destroy the provisioned experiment infrastructure. Here,
the node manager removes all emulated resources and
deletes the access credentials created for the experiments.

2.3.1 Machine Properties

Machines are the parts of the infrastructure on which ap-
plication code is executed. Fog machines can appear in
various different flavors, ranging from small edge devices
such as Raspberry Pis5, over machines within a server
rack, e.g., as part of a Cloudlet [31, 50], to virtual ma-
chines provisioned through a public cloud service such as
AWS EC2.

To emulate this variety of machines in the cloud, their
properties need to be described precisely. Typical proper-
ties of machines are compute power, memory, and storage.
Network I/O would be another standard property; how-
ever, we chose to model this only as part of the network
in between machines.

While the memory and storage properties are self-
explanatory, we would like to emphasize that there are
different approaches to measuring compute power. AWS
EC2, for instance, uses the amount of vCPUs to indicate
the compute power of a given machine. This, or the num-
ber of cores, is a very rough approximation that, however,
suffices for many use cases as typical fog application de-
ployments rarely achieve 100% CPU load. It is also pos-
sible to use more generic performance indicators such as
instructions per second (IPS) or floating-point operations
per second (FLOPS). Our current proof-of-concept proto-

5https://raspberrypi.org
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Table 1: Properties of Emulated Network Connections

Property Description

Rate Available Bandwidth Rate
Delay Latency of Outgoing Packages
Dispersion Delay Dispersion (+/-)
Loss Percentage of Packages Lost in Transition
Corruption Percentage of Corrupted Packages
Reorder Probability of Package Reordering
Duplicate Probability of Package Duplication

type (Section 3) uses Docker’s resource limits6.

2.3.2 Network Properties

Within the infrastructure graph, machines are connected
through network connections: only connected machines
can communicate. In real deployments, these connections
usually have diverse network characteristics [57], e.g., slow
and unreliable connections at the edge and fast and reli-
able connections near the cloud, which strongly affect ap-
plications running on top of them. These characteristics,
therefore, also need to be modeled – see Table 1 for an
overview of our model properties. For example, if a con-
nection between machines A and B has a delay of 10 ms,
a dispersion of 2 ms, and a package loss probability of 5%,
a package sent from A to B would have a mean latency
of 10 ms with a standard deviation of 2 ms and a 5%
probability of not arriving at all.

In most scenarios, not all machines are connected di-
rectly to each other. Instead, machines are connected via
switches, routers, or other machines. See Figure 4 for an
example with routers and imagine having to model the
cartesian product of machines instead. In the graph, net-
work latency is calculated as the weighted shortest path
between two machines. For instance, if the connection be-
tween M2 and R1 (in short: M2-R1) has a delay of 5 ms,
R1-R2 has 4 ms, and R2-M6 has 1 ms, the overall latency
for M2-M6 is 10 ms. The available bandwidth rate is the
minimum rate of any connection on the shortest path be-
tween two machines. The dispersion is the sum of disper-
sion values on the shortest path between two machines.
Probability-based metrics, e.g., loss, are aggregated along
the shortest path between two machines using basic prob-
ability theory methods (p = 1−

∏n
i=1(1− pi)).

2.4 Application Management Module

Fog applications comprise many components with complex
interdependencies. The configuration of such an applica-
tion also depends on the infrastructure as components are
not deployed on a single machine. For example, we need
an IP address and port to communicate with a compo-
nent running on another machine. MockFog can deploy
and configure application components on the emulated in-
frastructure, resolving such dependencies. For this pur-
pose, a requirement is that all application components are

6https://docs.docker.com/engine/reference/commandline/
update/
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Figure 4: Example: Infrastructure graph with machines
(M), routers (R), and network latency per connection.

Figure 5: The container configuration comprises a unique
container name and additional meta data.

Dockerized. Furthermore, developers have to define ap-
plication containers and how they should be deployed on
the infrastructure. If these requirements cannot be met,
developers can use their own deployment tooling instead
of the application management module before continuing
to the experiment orchestration.

For each container, the container configuration specifies
a unique container name, the Docker image to be used, in-
formation on local files that should be copied to the VM,
environment variables, and command-line arguments. As
an example, Figure 5 shows a very simple container config-
uration for a container with name camera in JSON format.
For this container, the Docker image is dockerhub/camera;
if it is not available locally, MockFog pulls the latest ver-
sion from the Docker Hub. Furthermore, MockFog copies
the contents of the local directory appdata/camera to the
/camera directory on each VM where the specific con-
tainer will run. When the container is started, the en-
vironment variables SERVER_IP and SERVER_PORT
are set to the specified values and become available to
the application running inside the container. The value of
SERVER_IP is resolved by a function that retrieves the
IP address of the VM named cell-tower-2. Additional such
functions, e.g., for retrieving the IP addresses of all VMs
on which a container with a specific container name have
been deployed, exist as well. Finally, the camera container
is instructed to write a local copy of its recording to /cam-
era/recording.mp4 via command-line arguments. As this
file path is inside the specified VM directory, its contents
can be retrieved by MockFog automatically.

In the deployment configuration, developers specify for
each container a deployment mapping of application com-
ponents to VMs. Furthermore, they can also limit CPU
and memory resources available to a container, e.g., for

4
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State A

Broadcast State Change (opt.)

Update Infrastructure (opt.)

Issue Application Commands (opt.)

State B
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Monitor Transitioning Conditions

Update Infrastructure (opt.)

Issue Application Commands (opt.)
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Figure 6: In each state, MockFog executes up to four ac-
tions.

balancing the resource needs of multiple containers run-
ning on the same VM. During the application container
deployment step (see Figure 3), the node manager installs
dependencies on the VMs, copies files, and starts the con-
figured containers.

Once the experiment has been completed, the developer
can also use the application container module for termi-
nating the application and for collecting results.

2.5 Experiment Orchestration Module

There are various ways of testing and benchmarking an ap-
plication. As discussed in Section 2.2, MockFog primarily
targets integration and system tests as well as benchmark-
ing because these require a dedicated test infrastructure.
MockFog can artificially inject (and revert) failures to em-
ulate network partitioning, simulate machine crashes and
restarts, as well as other events for such experiments. This
is particularly useful as failures are common in real deploy-
ments but will not necessarily happen while an application
is being tested. Hence, artificial failures are the go-to ap-
proach for studying the fault-tolerance and resilience of an
application [7]. While MockFog monitors the emulated in-
frastructure to detect deviations from what it configured,
one might be interested in additional monitoring data.
For this purpose, we recommend to either use the tooling
of the chosen cloud vendor, e.g., Amazon CloudWatch7

when running on AWS, or to deploy custom tooling, e.g.,
Prometheus, alongside the application through the appli-
cation management module.

For the experiment orchestration step (see Figure 3),
developers define an orchestration schedule in the form
of a state machine. We describe the actions executed
within a state in Section 2.5.1; we describe how developers
can build complex orchestration schedules with states and
their transitions in Section 2.5.2.

2.5.1 State Actions

The orchestration schedule comprises a set of states and
a set of transitioning conditions. At each point in time,
there is exactly one active state for which MockFog exe-
cutes up to four actions in the following order (Figure 6):

Update Infrastructure (opt.) With MockFog, all
properties of emulated fog machines and network connec-
tions (Table 1) can be manipulated. For this, the node
manager parses the orchestration schedule and sends in-
structions to the node agents which then update machine

7https://aws.amazon.com/cloudwatch

and network properties accordingly. For example, it is
possible to reduce the amount of available memory (e.g.,
due to noisy neighbors), render a set of network links tem-
porarily unavailable, increase network latency or package
loss, or render a machine completely unreachable, in which
case the node agent blocks all (application) communica-
tion to and from the respective VM. MockFog can also re-
set all infrastructure manipulations back to what was ini-
tially defined by the developer. Node agents acknowledge
infrastructure updates to assert adherence to the orches-
tration schedule. If there are any problems that cannot
be recovered autonomously, the node manager notifies the
developer. This action is optional.

Issue Application Commands (opt.) Based on the
orchestration schedule, the node manager can send cus-
tomizable instructions to application components. For ex-
ample, this can be used to instruct a workload generator
to change its workload profile. This action is optional.

Broadcast State Change (opt.) It is sometimes nec-
essary to notify application components or a benchmark-
ing system that a new state has been reached. While the
Issue Application Commands action may distribute com-
plex scripts if necessary, this action is a lightweight no-
tification mechanism. In this, the first two actions are
preparatory while this action signals to all components
that the next experiment phase has been reached. This
action is optional.

Monitor Transitioning Conditions Once the node
manager reaches this action, an experiment timer is
started. The node manager then continuously monitors
if a set of transitioning conditions – as defined in the or-
chestration schedule – have been met. In MockFog, transi-
tioning conditions can either be time-based or event-based:
A time-based condition is fulfilled when the experiment
timer reaches the specified time threshold. This is useful
if a developer wishes to let the application run for a specific
time to study effects of the active state. An event-based
condition is fulfilled when the node manager has received
the required amount of a specific event (messages). This is
useful if a developer wishes to react to events distributed
by application components, e.g., when any application
component sends a failure event once, MockFog should
transition to the ABORT EXPERIMENTS state. If there
are event-based conditions, application components have
to either send events to the node manager directly or there
must be a monitoring system such as Prometheus8 from
which the node manager can receive events.

2.5.2 Building Complex Orchestration Schedules

For each state, developers can define multiple transition-
ing conditions; this allows MockFog to proceed to different
states depending on what is happening during the exper-
iment. For instance, an orchestration schedule could have
a time-based condition that leads to an ABORT EXPERI-
MENTS state and additional event-based conditions that
lead to a NEXT LOAD PHASE state. A transitioning
condition may comprise several sub-conditions connected
by boolean operators. This allows developers to define ar-
bitrarily complex state diagrams, see for example Figure 7.

8https://prometheus.io
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Figure 7: The experiment orchestration schedule can be
visualized as a state diagram.

In the example, the orchestration schedule comprises
five states; the arrows between states resemble the transi-
tioning conditions. When started, the node manager tran-
sitions to INIT, i.e., it distributes the infrastructure con-
figuration update and application commands. Afterward,
it broadcasts state change messages (e.g., this might ini-
tiate the workload generation needed for benchmarking)
and begins monitoring the transition conditions of INIT.
As the only transitioning condition is a time-based condi-
tion set to 20 minutes (T: 20min), the node manager tran-
sitions to MEMORY -20% once it has been in the INIT
state for 20 minutes. During MEMORY -20%, the node
manager instructs all node agents to reduce the amount of
memory available to application components by 20% via
the Update Infrastructure action. Then it again broad-
casts state change messages (e.g., this might restart work-
load generation) and starts to monitor the transitioning
conditions of MEMORY -20%. For this state, there are
two transitioning conditions. If any application compo-
nent emits a memory error event, the node manager im-
mediately transitions to MEMORY RESET and instructs
the node agents to reset memory limits. Otherwise, the
node manager transitions to HIGH LATENCY after 20
minutes. It also transitions to HIGH LATENCY from
MEMORY RESET when it receives the event application
started and at least one minute has elapsed. At the start
of HIGH LATENCY, the node manager instructs all node
agents to increase the latency between emulated machines.
Then, it again broadcasts state change messages and waits
for 20 minutes before finally transitioning to FINAL.

3 Proof-of-Concept Implementa-
tion

In this section, we describe our proof-of-concept imple-
mentation MockFog 2.0. Due to the significant changes to
the MockFog approach, MockFog 2.0 is a complete rewrite
and does not build on the first MockFog prototype. Mock-
Fog 2.0 has been developed with the goal of independence
from specific IaaS cloud providers and can therefore be
extended to the provider of choice. Our current open
source proof-of-concept prototype9 integrates with AWS
EC2. By using EC2, MockFog has the same benefits and
disadvantages as this cloud service: acquiring machines is
easy and inexpensive, but experiments might be affected
by factors such as busy neighbors. Thus, if higher emula-
tion accuracy is needed, MockFog can easily be extended
to also support other cloud services such as Grid’500010 or
bare-metal machines. For this, it is sufficient to add an-
other Ansible playbook to the infrastructure module. Our

9https://github.com/OpenFogStack/MockFog2
10https://www.grid5000.fr/

implementation contains two NodeJS packages: the node
manager (Section 3.1) and the node agent (Section 3.2).

3.1 Node Manager
The node manager NodeJS package can either be in-
tegrated with custom tooling or be controlled via the
command-line. We provide a command-line tool as part
of the package that allows users to control the three mod-
ules’ functionality. For the infrastructure emulation mod-
ule, the node manager relies on the Infrastructure as Code
(IaC) paradigm. Following this paradigm, an infrastruc-
ture definition tool serves to “define, implement, and up-
date IT infrastructure architecture” [34]. The main ad-
vantage of this is that users can define infrastructure in
a declarative way with the IaC tooling handling resource
provisioning and deployment idempotently. In our im-
plementation, the node manager relies on Ansible11 play-
books.

The node manager command-line tool offers several
commands for each module. As part of the infrastructure
emulation module, the developer can:

• Bootstrap machines: set up virtual machines on AWS
EC2 and configure a virtual private cloud and the
necessary subnets.

• Install node agents: (re)-install the node agent on
each VM.

• Modify network characteristics: instruct node agents
to modify network characteristics.

• Destroy and clean up: remove all resources and delete
everything created through the bootstrap machines
command.

When modifying the network characteristics for a
MockFog-deployed application, the node manager ac-
counts for the latency between provisioned VMs. For ex-
ample, when communication should, on average, incur a
10 ms latency, and the existing average latency between
two VMs is already 0.7 ms, the node manager instructs
the respective node agents to delay messages by 9.3 ms.
As part of the application management module, the de-
veloper can:

• Prepare files: upload the local application directories
to the VMs and pull Docker images.

• Start containers: start Docker containers on each VM
and apply container resource limits.

• Stop containers: stop Docker containers on each VM.

• Collect results: download the application directories
from the VMs to a local directory on the node man-
ager machine.

With the experiment orchestration module, the devel-
oper can initialize experiment orchestration. When the or-
chestration schedule includes infrastructure changes, the
node manager instructs affected node agents to override
their current configuration following the updated model.
This is done via a dedicated “management network”, which
always has vanilla network characteristics and is hidden
from application components.

11https://ansible.com
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3.2 Node Agent
While the node agent is also implemented in NodeJS, it
uses the Python library tcconfig12 to manage network
connections. tcconfig is a command wrapper for the
linux traffic control utility tc13. Thus, our current node
agent prototype only works for Linux-based VMs. The
node manager ensures that all dependencies are installed
alongside the node agent.

The node agent can either be started by the node man-
ager or manually via command-line. The only configura-
tion necessary is the port on which the node agent exposes
its REST endpoint. This REST endpoint is used by the
node manager but can also be used by developers directly.
To simplify its usage, we created a fully documented Swag-
ger14 interface.

Using the REST endpoint, one can retrieve status infor-
mation and real-time ping measurements to a list of other
machines. The node manager uses the ping measurement
results to calculate the artificial delay, which should be
injected to reach the desired latency between VMs. Fur-
thermore, the endpoint can be used to set resource lim-
its for individual containers as needed by the application
management module for the start containers command
and by the experiment orchestration module. Finally, the
endpoint can be used to supply (and read the current) net-
work manipulation configuration. On each update call, the
node agent receives an adjacency list containing all other
VMs. The list includes the corresponding specification of
its effective metrics: how it should be realized from the
viewpoint of the node manager’s infrastructure model. If
a particular machine should not be reachable, the adja-
cency list contains a package loss probability of 100% for
the corresponding VM. This allows us to emulate network
partitions easily.

4 Experiments
After having shown with our proof-of-concept implemen-
tation MockFog 2.0 that this approach can indeed be im-
plemented, we now use an example application to show-
case its key features. In this second evaluation part, we
run experiments with a fog-based smart factory applica-
tion (Section 4.1) for which we emulate a runtime infras-
tructure with MockFog 2.0. In the experiments, we use an
orchestration schedule (Section 4.2) that includes multiple
infrastructure and workload changes and study the effects
on the application (Section 4.3). Note that our goal is to
provide an overview of the features of MockFog 2.0 and
not to design a realistic benchmark or system test of our
example application. This evaluation also serves the pur-
pose of showing how simple it is to run such application
experiments with MockFog: one only needs to create con-
figuration files15 for our three modules. Then, MockFog
sets up an infrastructure testbed in the cloud, handles the
application roll-out and experiment orchestration, collects
results (i.e., application output such as log files and the
log files of node agents), and finally destroys the testbed.

12https://github.com/thombashi/tcconfig
13https://man7.org/linux/man-pages/man8/tc.8.html
14https://swagger.io/
15The configuration files of our experiments are available in

the node-manager/run-example-smartfactory directory of our code
repository.

As a scenario, we build upon the smart factory application
introduced in [40]16.

4.1 Overview of the Smart Factory Exam-
ple

In the smart factory, a production machine produces goods
that are packaged by another machine. Based on input
from a camera and a temperature sensor, the production
rate and packaging rate are adjusted in real-time. Fur-
thermore, the packaging rate is used to create a logistic
prognosis, i.e., for scheduling the collection and delivery
of goods. Finally, a dashboard provides a historic packag-
ing rate overview.

Each of the components of the smart factory applica-
tion communicates with at least one other component
(see Figure 8). Camera sends its recordings to check
for defects which notifies production control about prod-
ucts that should be discarded. Based on input from pro-
duction control and temperature sensor, adapt packaging
transmits the target packaging rate to packaging control.
Adapt packaging calculates the packaging rate based on
the current production rate, the backlog of produced but
not packaged items, and the temperature input: packag-
ing must be halted if the current temperature exceeds a
threshold. Packaging control sends the current rate and
backlog to predict pickup and aggregate. Predict pickup
predicts when the next batch of goods is ready for pickup
and sends this information to logistics prognosis. Ag-
gregate aggregates multiple rate and backlog values to
preserve bandwidth and transmits the results to gener-
ate dashboard. Generate dashboard stores the data in a
database, creates an executive summary, and sends it to
central office dashboard.

The smart factory application comprises components
that react to events from the physical world (light gray
boxes) and components that only react to messages re-
ceived from other application components (dark gray
boxes). For example, the temperature sensor measures
the physical machine’s operation temperature that pack-
ages goods. Adapt packaging, on the other hand, receives
messages from other application components and has no
direct interaction with the physical world.

When testing real-time systems, two important concepts
are reproducibility and controllability [1, p. 263]. During
experiments, camera and temperature sensor hence gener-
ate an input sequence that can be controlled by MockFog
2.0 to achieve reproducibility. Furthermore, components
that do something in the physical world based on received
messages, e.g., packaging control, only log their actions
when doing experiments rather than sending instructions
to physical machines.

Figure 9 shows the machines and network links of the
smart factory infrastructure. A gateway connects the cam-
era, production machine, packaging machine, and temper-
ature sensor. Each has a 2 ms round-trip latency to the
gateway, 1 CPU core, and 0.1 GB to 1.0 GB of avail-
able memory. The gateway is connected to the factory
server, which is connected to the central office server and
the cloud. The cloud and central office server are also
connected directly. All connections between machines are

16Our application source code is available at https://github.com/
OpenFogStack/smart-factory-fog-example/tree/mockfog2.
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Figure 8: The smart factory application comprises 11 com-
ponents and 10 communication paths between individual
components (C01 — C10).
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Figure 9: The smart factory infrastructure comprises mul-
tiple machines with different CPU and memory resources.
Communication between directly connected machines in-
curs a round-trip latency between 2 ms and 24 ms.

Table 2: Mapping of Application Components to Machines

Application Component Machine

Camera Camera
Temperature Sensor Temperature Sensor
Check for Defects Gateway
Adapt Packaging Gateway
Production Control Production Machine
Packaging Control Packaging Machine
Predict Pickup Factory Server
Logistics Prognosis Factory Server
Aggregate Factory Server
Generate Dashboard Cloud
Central Office Dashboard Central Office Server

set up bandwidth of 1 GBit and do not incur any package
loss, corruption, reordering, or duplicates. Table 2 shows
the mapping of application components to machines. To
derive such a mapping and to compare it to other ap-
proaches, developers can use approaches such as [20, 27,
55].

4.2 Orchestration Schedule

For the experiments, we use an orchestration schedule with
nine states (Figure 10). At the beginning of each state,
MockFog 2.0 instructs camera and temperature sensor to
restart their workload data sequence. Thus, the applica-
tion workload is comparable during each state. The sched-

INITBaseline

Factory Server Lost a CPU Core

20% Loss + 20 % Corruption 
between Gateway & Factory Server

T: 1min

T: 5min &
E: 295 dge

Infrastructure Manipulations Reset

100ms Delay 
between Factory Server & Cloud 

Temperature Sensor Measurements 
Increase by 30%

T: 5min &
E: 295 dge

T: 5min &
E: 295 dge

T: 5min &
E: 295 dge

T: 5min &
E: 295 dge

Final

T: 5min &
E: 250x dge

EXPERIMENT 
FAILED

T: 5min 5sec

T: 1min

A

B

C

D

E

F

Figure 10: The orchestration schedule has nine states.
During successful executions, the transitioning conditions
mostly use a combination of time-based (5 minutes) and
event-based conditions (receipt of 295 dashboard gener-
ated events (dge)).

ule starts with INIT ; after a minute, MockFog 2.0 tran-
sitions to state A. The purpose of state A is to establish
a baseline by running the application in an environment
that closely mimics the real production environment. At
runtime, generate dashboard creates a new dashboard once
per second and sends a notification to the node manager.
We use this event as a failure indicator in all states; if it
has not been received at least 295 times within a time-
frame of 5 minutes, the experiment failed. If, however, it
has been received 295 times and five minutes have passed,
MockFog 2.0 transitions to the next state.

For state B, MockFog 2.0 changes the infrastructure:
the factory server has only access to one CPU core in-
stead of two. Then, in state C, loss and corruption on the
network link between gateway and factory server are set
to 20%. Note that the factory server has not regained ac-
cess to its second CPU core. In state D, all infrastructure
changes are reset; the environment now again closely mim-
ics the real production environment and the application
can stabilize. In state E, the round-trip latency for mes-
sages sent from the factory server to the cloud is increased
from 24 ms to 100 ms. In state F, the latency is reset to
24 ms but the temperature sensor is instructed to change
the measured generation: the average temperature sensor
measurements are now 30% higher which causes the pack-
aging machine to pause more frequently. This, in turn,
should decrease the average packaging rate and increase
the average packaging backlog. After state F, MockFog
2.0 transitions to FINAL and the experiment orchestra-
tion ends. If at any point a failure occurs, MockFog 2.0
will transition to EXPERIMENT FAILED.

4.3 Results

In the following, we first validate that running the or-
chestration schedule leads to reproducible results (Sec-
tion 4.3.1). Then, we analyze how the changes made in
each state of the orchestration schedule affect the smart
factory application (Section 4.3.2) and summarize our re-
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Figure 11: Latency deviation across experiment runs is small for most communication paths even though experiments
were run in the cloud. On paths C06 and C07, resource utilization is high in states B, C, and E leading to the expected
variance across experiment runs.

sults (Section 4.3.3). Note that the analysis of applica-
tion logs and other output files is not done by MockFog
since this is entirely application-specific and also depends
on the load generator used. Interpreting which latency,
processing time, respective variance values, etc. are ac-
ceptable, also depends on the concrete application. Thus,
our results and conclusions are only valid for our specific
use case and primarily serve the purpose of demonstrating
how this process could look like in practice.

4.3.1 Experiment Reproducibility

To analyze reproducibility, we repeat the experiment five
times. For each experiment run, we bootstrap a new in-
frastructure, install the application containers, and start
the experiment orchestration – this is done automatically
by MockFog 2.0. After the experiment run, we calcu-
late the average (one-way) latency for each communication
path (C01 to C10 in Figure 8). Ideally, the latency results
from all five runs should be identical for each communica-
tion path; in the following, we refer to the five measure-
ment values for a given communication path as latency
set. In practice, however, it is not possible to achieve such
a level of reproducibility because the application is influ-
enced by outside factors [1, p. 263]. For example, running
an application on cloud VMs and in Docker containers al-
ready leads to significant performance variation [15, 16].
To measure this variation, we use the median runs of each
latency set as a baseline and calculate how much individ-
ual runs deviate from this baseline (see Figure 11). Con-
sidering that we are running the experiments in a public
cloud, we can see in the figure that the deviation is small
for almost all communication paths. The exception are
communication paths C06 and C07 in states B, C, and
E which show significant variance across runs. In these
states, the node manager applies various resource limits
on the factory server. Reducing the available compute and
network resources seems to impact the stability of affected
communication paths negatively. Identifying such cases,
however, in which infrastructure changes negatively im-
pact application stability is exactly for what we designed
MockFog. Thus, we can conclude that experiment orches-
tration leads to reproducible results under normal operat-
ing conditions. This holds true even if a new set of virtual
machines is allocated for each run. When a higher exper-
iment reproducibility is required than the one achievable
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Figure 12: Latency between packaging control and logis-
tics prognosis is affected by both CPU and network re-
strictions.

in a public cloud, one could, for example, add support for
private OpenStack clusters to the infrastructure module.

4.3.2 Application Impact of State Changes

Of the five experiment runs, the second run is the most
representative for the orchestration schedule: On average,
the latency of its communication paths deviate by 4.45%
from the median latency of the set. Run three, four, five,
and one deviate by 5.20%, 5.28%, 9.77% and 10.23% re-
spectively. Thus, we select the second run as the basis
for analyzing how the changes made in each state affect
application metrics.

Figure 12 shows the latency between packaging control
and logistics prognosis. This latency includes the commu-
nication path latency of C06 and C07, as well as the time
predict pickup needs to create the prognosis. In states A,
D, E, and F, there are either no infrastructure changes or
the ones made are on alternative communication paths;
thus, latency is almost identical. In state B, the factory
server loses a CPU core; as a result, predict pickup needs
more time to create a prognosis which increases the la-
tency. In state C, the communication path C06 addition-
ally suffers from a 20% probability of package loss and a
20% probability of package corruption. As these packages
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Figure 13: Latency on C09 between aggregate and generate
dashboard is affected by the delay between factory server
and cloud.

have to be resent17, this significantly increases overall la-
tency.

Figure 13 shows the latency on C09, i.e., the time be-
tween aggregate sending and generate dashboard receiving
a message. In states A, D, and F, there are either no
infrastructure changes or the ones made are on alterna-
tive communication paths; thus, latency is almost identi-
cal. Note that the minimum latency is 12 ms; this makes
sense as the round-trip latency between factory server and
cloud is 24 ms. In states B and C, the factory server loses
a CPU core; MockFog 2.0 implements this limitation by
setting Docker resource limits. As a result, there is now
1 CPU core that is not used by the application contain-
ers and hence available to the operating system. As the
resource limitation seems not to impact aggregate, the ad-
ditional operating system resources slightly decrease la-
tency. While the effect here is only marginal, one has
to keep such side effects in mind when doing experiments
with Docker containers. In state E, the round-trip latency
between factory server and cloud is increased to 100 ms.
Still, the minimum (one-way) latency only increases to
18 ms as packages are routed via the central office server
(round-trip latency is 16 ms + 20 ms).

The packaging control reports its current packaging rate
once a second. Figure 14 shows the distribution of re-
ported values, i.e., how often each packaging rate was re-
ported per state. In states A, B, C, D, and E, the workload
generated by camera and temperature sensor is constant,
so the rates are similar. In state F, however, the tempera-
ture sensor distributes measurements that are 30% higher
on average. As a result, the packaging machine must halt
production more frequently, i.e., the packaging rate equals
zero. This also increases the backlog; hence, the packaging
machine will more frequently run at full speed to catch up
on the backlog, i.e., the packaging rate equals 15.

4.3.3 Summary

In conclusion, our experiments show that MockFog 2.0 can
be used to automatically set up an emulated fog infras-
tructure, install application components, and orchestrate
reproducible experiments. As desired, changes to infras-
tructure and workload generation are clearly visible in the

17Resent packages can also be impacted by loss or corruption.
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Figure 14: Distribution of packaging rate per state: When
the temperature increases in state F, packaging control
needs to pause more often resulting in more frequent pack-
aging rates of 0 (machine is paused, 1st Quartile) and 15
(machine is running at full speed to catch up on the back-
log, 3rd Quartile).

analysis results. The main benefit of the MockFog ap-
proach is that this autonomous process can be integrated
into a typical application engineering process. This allows
developers to automatically evaluate how a fog application
copes with a variety of infrastructure changes, failures, and
workload variations after each commit without access to a
physical fog infrastructure, with little manual effort, and
in a repeatable way [6].

5 Related Work

Testing and benchmarking distributed applications in fog
computing environments can be very expensive as the pro-
visioning and management of needed hardware is costly.
Thus, in recent years, many approaches have been pro-
posed that aim to enable experiments of distributed ap-
plications or services without the need for access to fog
devices, especially once located at the edge.

There are several approaches that, similarly to Mock-
Fog, aim to provide an easy-to-use solution for experiment
orchestration on emulated testbeds. WoTbench [22, 23]
can emulate a large number of Web of Things devices on
a single multicore server. As such, it is designed for ex-
periments involving many power-constrained devices and
cannot run experiments with many resource-intensive ap-
plication components such as distributed application back-
ends. D-Cloud [4, 18] is a software testing framework that
uses virtual machines in the cloud for failure testing of
distributed systems. However, D-Cloud is not suited for
evaluating fog applications as users cannot control net-
work properties such as the latency between two machines.
Héctor [5] is a framework for automated testing of IoT ap-
plications on a testbed that comprises physical machines
and a single virtual machine host. Having only a single
host for virtual machines significantly limits scalability.
Furthermore, the authors only mention the possibility of
experiment orchestration based on an “experiment defini-
tion” but do not provide more details. Balasubramanian et
al. [3] and Eisele et al. [13] also present testing approaches
that build upon physical hardware for each node rather
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than more flexible virtual machines. EMU-IoT [44] is a
platform for the creation of large scale IoT networks. The
platform can also orchestrate customizable experiments
and has been used to monitor IoT traffic for the prediction
of machine resource utilization [43]. EMU-IoT focuses on
modeling and analyzing IoT networks; it cannot manip-
ulate application components or the underlying runtime
infrastructure.

Gupta et al. presented iFogSim [17], a toolkit to evalu-
ate placement strategies for independent application ser-
vices on machines distributed across the fog. In contrast
to our solution, iFogSim uses simulation to predict sys-
tem behavior and, thus, to identify good placement de-
cisions. While this is useful in early development stages,
simulation-based approaches cannot be used to test real
application components, which we support with MockFog.
[10, 28, 46] also describe systems which can simulate com-
plex IoT scenarios with thousands of IoT devices. Addi-
tionally, network delays and failure rates can be defined
to model a realistic, geo-distributed system. More simula-
tion approaches include FogExplorer [19, 20], which aims
to find good fog application designs, or Cisco’s Packet-
Tracer18, which simulates complex networks. However, all
these simulation approaches do not support experiments
with unmodified application components. This also ap-
plies to SimGrid [11], a widely used framework for the
simulation of distributed computer systems. What makes
SimGrid unique is its capability of simulating the commu-
nication between real application components that adhere
to the MPI protocol by re-compiling them with a special
toolkit. During an experiment, each component is also em-
ulated its own unix process. MockFog provides stronger
resource isolation with VMs and supports all TCP/IP-
based application protocols.

[2, 12, 14, 32, 37, 38] build on the network emulators
MiniNet [35] and MaxiNet [58]. While they target a simi-
lar use case as MockFog, their focus is not on application
testing and benchmarking but on network design (e.g.,
network function virtualization). Based on the papers, the
prototypes also appear to be designed for single machine
deployment – which limits scalability – while MockFog
is specifically designed for distributed deployment. Also,
neither of these approaches appears to support experi-
ment orchestration or the injection of failures. Missing
support for experiment orchestration is also a key differ-
ence between MockFog and MAMMOTH [30], a large scale
IoT emulator, Distem [49], a tool for building experiment
testbeds with Linux containers, and EmuEdge [60], and
edge computing emulator that supports network replay.
Specifically in regards to our experiments in Section 4, this
means that the application roll-out and experiment orches-
tration would need to be done manually. This includes up-
dating the infrastructure, e.g., via the EmuEdge API, dis-
tributing application instructions and state changes, e.g.,
by writing scripts that use the curl command line utility,
and monitoring transitioning conditions, e.g., by setting
up a web server that collects events. Still, one could in-
tegrate such testbed emulation approaches in MockFog’s
infrastructure module to support other execution environ-
ments while still benefiting from automated experiment
orchestration.

OMF [42], MAGI [24], and NEPI [41] can orchestrate
18https://www.netacad.com/courses/packet-tracer

experiments using existing physical testbeds. On a high
level, these solutions only aim to provide functionality sim-
ilar to the third MockFog module, i.e., the experiment or-
chestration module.

For failure testing, Netflix has released Chaos Mon-
key [56] as open source19. Chaos Monkey randomly ter-
minates virtual machines and containers running in the
cloud. This approach’s intuition is that failures will occur
much more frequently, so engineers are encouraged to aim
for resilience. Chaos Monkey does not provide the runtime
infrastructure as we do, but it would complement our ap-
proach very well. For instance, Chaos Monkey could be
integrated into MockFog’s experiment orchestration mod-
ule. Another solution that complements MockFog is De-
Fog [33]. DeFog comprises six Dockerized benchmarks
that can run on edge or cloud resources. From the Mock-
Fog point of view, these benchmark containers are work-
load generating application components, i.e., load genera-
tors. Thus, they could be managed and deployed by Mock-
Fog’s application management and experiment orchestra-
tion module. Gandalf [29] is solely a monitoring solution
for cloud deployments. Azure, Microsoft’s cloud service
offer, uses Gandalf in production. It is therefore not part
of the application engineering process (Figure 3) and could
be used after running experiments with MockFog. Finally,
MockFog can be used to evaluate and experiment with
fog computing frameworks such as FogFrame [54] or UR-
MILA [52].

6 Discussion

While MockFog allows application developers to overcome
the challenge that a fog computing testing infrastructure
either does not exist yet or is already used in production,
it has some limitations. For example, it does not work
when a specific local hardware is required, e.g., when the
use of a particular crypto chip is deeply embedded in the
application source code. MockFog also tends to work bet-
ter for the emulation of larger edge machines such as a
Raspberry Pi but faces limitations when smaller devices
are involved as they cannot be emulated accurately.

If the communication of a fog application is not based
on TCP/IP, e.g., because sensors communicate via a Lo-
RaWAN [53] such as TheThingsNetwork20, MockFog’s ap-
proach of emulating connections between devices does not
work out of the box as these sensors expect to have access
to a LoRa sender. With additional effort, however, appli-
cation developers could adapt their sensor software to use
TCP/IP when no Lora sender is available. Furthermore,
in its current state, MockFog’s network manipulations also
only target the application layer. Thus, matters such as
medium access contention, protocol specifications, e.g., en-
abling and disabling RTS/CTS for WIFI based networks,
or specifics of mobile networks (4G/5G) are not emulated.
To support such use cases, others have already come up
with promising solutions in the context of MiniNet that
might serve as a blueprint for extending MockFog: Fontes
et al. [14] extended MiniNet to also emulate WIFI net-
works and Fiandrino et al. [2] added a mobile network
suite to MiniNet. Also, even wired TCP/IP connections

19https://github.com/Netflix/chaosmonkey
20https://www.thethingsnetwork.org
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can be affected by other users, electrical interference, or
natural disasters. For this, another solution could be to
add a machine learning component to MockFog that up-
dates connection properties based on past data collected
on a reference physical infrastructure. Still, it is hard to
justify this effort for most use cases.

For the management of application containers, we de-
cided to directly operate with Docker containers instead
of using a more powerful solutions such as Kubernetes21.
The main reason for this is that we do not want to assume
that an application is using a certain container manage-
ment solution; especially, because in practice different so-
lutions are used in the cloud or at the edge. Since our
MockFog prototype relies heavily on Ansible playbooks,
one could easily add support for such solutions if neces-
sary.

When an application relies on a managed Kubernetes
service such as Amazon EKS22, one should only use Mock-
Fog for emulating other parts of the infrastructure and set
up a proxy machine that forwards traffic to EKS. This
way, the cloud part of the application can run in its regu-
lar environment and MockFog only manages the non-cloud
parts by changing network characteristics between proxy
and emulated edge machines.

When testing a large fog application, only the node
manager is affected by increasing the number of VMs as it
has to distribute instructions to more machines. In prac-
tice, however, the node manager will even for large-scale
deployments be lightly loaded as distributing instructions
is not particularly resource-intensive. Even in a situation
where the node manager experiences a high load, it would
only mean that state changes take slightly longer – the
application itself would not be affected at all. It is also
be possible to distribute the node manager. In practice,
though, MockFog’s scalability will usually be limited by
the number of VMs that can be provisioned from the cloud
provider of choice. Furthermore, it is – simply for cost rea-
sons – not desirable to roll out a large-scale fog application
to hundreds of MockFog nodes; it is also not necessary for
testing and benchmarking purposes: When we visualize
a fog environment as a tree with the cloud as the root
node and edge devices as leaves, most paths from cloud to
edge will run the same application components, e.g., in the
smart factory use case, there might be multiple factories
that send data to the cloud. For testing and benchmark-
ing, however, it will usually suffice to only deploy a single
example path on MockFog. Finally, another option is to
run groups of devices with similar network characteristics,
such as multiple IoT sensors, on a few large VM.

7 Conclusion

In this paper, we proposed MockFog, a system for the em-
ulation of fog computing infrastructure in arbitrary cloud
environments. MockFog aims to simplify experimenting
with fog applications by providing developers with the
means to design emulated fog infrastructure, configure
performance characteristics, manage application compo-
nents, and orchestrate their experiments. We evaluated
our approach through a proof-of-concept implementation

21https://kubernetes.io/
22https://aws.amazon.com/eks/

and experiments with a fog-based smart factory applica-
tion. We demonstrated how MockFog’s features can be
used to study the impact of infrastructure changes and
workload variations.
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