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ABSTRACT
The new space race is heating up as private companies such as
SpaceX and Amazon are building large satellite constellations in
low-earth orbit (LEO) to provide global broadband internet access.
As the number of subscribers connected to this access network
grows, it becomes necessary to investigate if and how edge com-
puting concepts can be applied to LEO satellite networks.

In this paper, we discuss the unique characteristics of the LEO
edge and analyze the suitability of three organization paradigms for
applications considering developer requirements. We conclude that
the serverless approach is the most promising solution, opening up
the field for future research.

CCS CONCEPTS
•Computer systems organization→Heterogeneous (hybrid)
systems; Distributed architectures; • Networks → Cloud comput-
ing.
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1 INTRODUCTION
Private Internet and aerospace companies are currently building
the largest satellite constellations in existence: SpaceX, Amazon,
and Telesat – the so-called “New Space” companies – are deploy-
ing or planning to launch tens of thousands of satellites into low
Earth orbit (LEO) to provide global high-speed Internet access from
space [28]. SpaceX’s Starlink constellation has already entered a
public beta phase for subscribers in North America and the United
Kingdom with more than 1,500 satellites in use [32].

Beyond enabling Internet access for underserved regions such
as rural areas, planes, or cargo and passenger ships, these new

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
EdgeSys ’21, April 26, 2021, Online, United Kingdom
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8291-5/21/04. . . $15.00
https://doi.org/10.1145/3434770.3459736

satellite access networks can be a viable option for connecting all
kinds of edge devices, even if terrestrial access is readily available.
High-bandwidth, low-latency connections to client ground stations
and via inter-satellite links (ISL) enable direct low-latency routing
between any two ground stations; thus, many argue that satellite
Internet will see broad adoption in the future [5, 7, 12].

Still, sending data from all end devices to a centralized location
for processing can put a substantial strain on the satellite network.
Especially for applications that transfer large amounts of data or
require low latency event processing, this can quickly become a
problem [25]. The same issue applies to terrestrial networks for
which edge computing, a computing paradigm that uses compute
resources at the edge of the network in direct proximity to end
users and devices, has been proposed as a promising solution [3, 9].
Applications can use these resources through edge platforms that
abstract from the geo-distributed server deployment and resource
heterogeneity. These platforms are based on different organiza-
tion paradigms for applications (OPA), e.g., VMs, containers, or
serverless functions.

Only recently, it has been proposed to also use computing re-
sources at the LEO edge to facilitate novel applications serving a
global user base [6]. To realize this vision, however, edge platforms
must consider the unique characteristics of the LEO edge while still
satisfying general requirements of application developers. As a first
step towards this goal, we must consider the core of such a platform,
the OPA, and analyze different options in light of the challenges at
the LEO edge. We therefore make the following contributions:

(1) We discuss the unique characteristics of the LEO edge (Sec-
tion 3).

(2) We derive requirements for building LEO edge applications
from a developer perspective (Section 4).

(3) We analyze the suitability of three OPAs with regards to how
they might satisfy developer requirements considering LEO
edge characteristics (Section 5).

2 BACKGROUND & RELATEDWORK
In this section, we briefly introduce and describe the state of the art
for large LEO satellite communication networks, edge computing,
and OPAs. Furthermore, we also provide an overview of existing
LEO edge computing research.

2.1 LEO Communication Networks
Satellite-backed Internet access has been available for decades with
geostationary satellites at altitudes of 35,000km. The high altitude
combined with the requirement to orbit above the equator, however,
result in high access latency for consumers which renders satellite
Internet inviable for many use cases [10, 17].
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Figure 1: Overview of a LEO satellite constellation compris-
ing different shells. Shown here is the proposed first phase
of the Starlink deploymentwith five shells of 1,584 satellites
at 550km, 1,600 at 1110km, 400 at 1130km, 375 at 1275km,
and 450 at 1325km altitude [20].

Now, a new generation of Internet satellites is being developed
by companies such as SpaceX, Amazon, and Telesat. Thousands of
these satellites are being deployed in large constellations at altitudes
of below 600km, i.e., in the LEO. Thus, satellites continuously orbit
the globe and cover large ground distances in short periods of time.
Each satellite is equipped with radio transmitters and receivers to
connect to ground stations. As ground station equipment is small
enough for use in family homes or airplanes, each satellite serves
many user terminals concurrently [5, 7, 12, 13].

A complete LEO satellite constellation comprises different shells
of satellites. Each shell is a collection of orbital planes with the
same orbital parameters equally distributed across the earth, with
each plane comprising a number of equally spaced satellites. We
show such a constellation in Figure 1.

Given the low altitude, a single satellite has a relatively small
cone of coverage yet it must be connected to some form of uplink
to provide Internet access. If no ground station uplink is available,
e.g., because a satellite currently crosses an ocean, satellites may
connect to adjacent satellites via ISLs. This way, satellites can ac-
quire Internet access even if no ground station is within their field
of view. Satellites also use ISLs for providing low latency broadband
access since light propagates faster in a vacuum than in fiber. This
makes satellite based Internet an attractive alternative for many
Internet subscribers [5, 11, 21].

A main driver of the “new space race” are decreasing satellite
launch cost due to the development of reusable rockets such as
SpaceX’s Falcon 9 launch vehicle [19]. Yet building a LEO satellite
constellation from scratch still requires large upfront investments.
Furthermore, regulatory challenges prove to be another market
entry barrier. Despite its size, LEO is a scarce resource as satellite
collisions have to be averted. To this end, satellites are also equipped
with the capability to dodge obstacles. Additionally, companiesmust
also register the usage of radio frequencies for the communication
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Figure 2: OPAs by levels of abstraction [16]: while less ab-
straction offers more freedom and flexibility, more abstrac-
tion simplifies writing applications and shifts execution
control to the platform which often increases efficiency.

between ground stations and satellites. These factors mean that any
change to the constellations requires a substantial lead time [5, 31].

2.2 Edge Computing
The demand for processing data close to its origin led to an in-
creased popularity of the edge computing paradigm in research
and industry [3, 9]. The main idea behind edge computing is to
embed computing resources into the edge of the network, i.e., close
to clients. Compared to cloud computing, resources are thus avail-
able with low latency and bandwidth costs. Preventing data from
being transmitted to the cloud can also reduce privacy and security
risks [24].

Typically, edge computing infrastructures comprise a multitude
of geo-distributed nodes with different compute, storage, and net-
work capabilities. Using such a heterogeneous infrastructure is
significantly more difficult than the ease-of-adoption developers
are used to from the cloud: Applications need to consider geo-
distribution, horizontal scalability, and network availability for fully
leveraging edge resources. To remedy this, a number of edge com-
puting platforms have been proposed to abstract from the underly-
ing infrastructure. To this end, they employ service offloading tech-
niques, data geo-replication, or resource sharing [3, 14, 15, 27, 29].

Edge computing platforms are usually developed around a spe-
cific OPA. In Figure 2, we show that the three main paradigms
that have initially evolved in the context of cloud computing offer
different levels of abstractions.

Virtual Machines. Virtual machines (VM) are virtualized servers
that run operating systems which have often been slightly modified
for VM usage to increase performance. Multiple virtual machines
can share a common physical machine, hence a single server can
be made to look like many smaller machines. VMs can be used just
like regular servers and host long-running applications, often with
multiple connected services sharing a virtual host [9].

Containers. Containers encapsulate individual processes instead
of full servers. Each service can be packaged into a container im-
age together with its dependencies and deployed alongside other
containers on a common host. Containers have the benefit that no
entire operating system has to be managed by application devel-
opers but rather only the actual service and its dependencies. This
also reduces the application footprint, making container migra-
tion easier than VM migration. Containers do not change the way
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processes are executed, so they can also be used for long-running
applications [23].

Serverless Functions. With serverless functions, only the actual
code is deployed while the runtime is provided by the platform.
Serverless functions are short-lived, i.e., they exist only for a single
invocation. As such, they cannot maintain state yet provide scal-
ability as additional, parallel function instances can be launched
to distribute requests. Conversely, function instances only con-
sume resources during their execution [27]. Nevertheless, even
serverless applications must maintain state somehow; to that end,
serverless databases, often following the NoSQL paradigm, are em-
ployed [14, 15].

The distinction between these paradigms is not always clear in
their implementation. For example, a serverless function platform
may use containers as runtimes for their functions [27]. Similarly,
a container orchestrator can run containers on virtual machines.
A fourth paradigm, the unikernel, is currently on the rise. As with
containers, unikernels package applications and their runtimes, yet
they also add a library operating system that obviates the need for
a shared OS [22]. We do not consider them separately in this paper
as they combine concepts of virtual machines and containers.

2.3 Related Work
The highly dynamic nature of satellite constellations and their
limited capacity for computational power means that existing edge
computing platforms are not yet ready for being applied to the
LEO edge. Based on this premise, Bhosale et al. [8] propose Krios, a
new platform based on Kubernetes that manages stateless as well
as stateful services within the LEO edge. Through ground station
servers that calculate satellite orbital positions, Krios is able to
predict when a service has to be spawned in a different satellite in
a “just-ahead-of-time” manner. Krios is therefore able to provide
services without downtime from a client perspective. While this
is an important first proposal, the authors decision for containers
seems somewhat arbitrary as they skip the evaluation of different
paradigms, as we do in this paper.

The feasibility study conducted by Bhattacherjee et al. [6] ana-
lyzes possible use cases and hand-off strategies, and explores the
viability of establishing computing resources in space. The authors
specifically mention content delivery networks, a use case we have
also investigated in more detail in a previous study [26], augmented
reality, “Tactile Internet” applications, multi-user interaction, and
space-native data processing as possible use-cases. While such ap-
plications are also supported by terrestrial edge computing, the
authors note that adding compute capabilities to LEO satellites can
help to bridge the digital divide by bringing them to underserved
areas as well. The presented hand-off strategy is based on the con-
cept of “virtual stationarity” to abstract from the dynamic nature
of the satellites and make the server appear as a single entity to
the clients. For this, a heuristic picks a satellite server from a set
of options with a near-optimal latency that is also visible to the
client for the longest time, thus reducing the amount of required
hand-offs. The next logical step beyond this initial feasibility study
and effective server selection strategy is to build a platform that
enables real application to take advantage of LEO edge computing.

As a prerequisite, however, we first have to analyze different OPAs
with regard to their suitability for the LEO edge.

3 LEO EDGE CHARACTERISTICS
In this section, we discuss the unique characteristics of the LEO edge.
At the time of writing, LEO satellites can only be used to connect to
the Internet. Computing infrastructure, e.g., in the form of servers
located at each individual satellite [6, 8], is not yet available to the
general public. Thus, this discussion makes likely assumptions in
some parts, especially concerning hardware capabilities.

C1: Mobile Server Infrastructure. The first thing to keep in mind
with servers attached to satellites in a LEO constellation is that these
satellites orbit the earth at high speeds. For example, a satellite at an
altitude of 550km must maintain a speed of 27,000km/h to maintain
its orbit [7]. Consequently, the servers also move at this speed.
For the static ground station equipment this means that they must
frequently change their communication partner.

C2: Same-model Servers. Then, satellites in a constellation are
mostly the same model. The reason for this is that satellites orbit
the earth continuously while the earth revolves beneath the satellite
constellation. Thus, each satellite eventually covers each part of
the earth which means that using different kinds of satellites for
different regions is not possible. Subsequently, the servers must
also be of the same model. It can be possible to upgrade server
capabilities over time as satellites reach the end of their lifetime,
yet developing different versions can have a negative impact on
development and production costs. Hence, we believe that it is likely
that hardware capabilities will be comparable across satellites until
a new generation of satellites (then with again improved hardware)
is launched. We believe that it is unlikely that more than two or
three hardware versions will be deployed in parallel.

C3: Homogeneously Distributed Servers. Due to their non-geosta-
tionary nature, satellites are also homogeneously distributed across
the globe, with satellites evenly spaced across an orbit. This means
that each ground station has access to more or less the same amount
of equally equipped satellites at all times.

C4: Heterogeneous Demand. Nevertheless, demand is of course
not homogenous across earth. Urban areas have a higher client
density which increases resource demand compared to rural areas
or oceans with a smaller client population.

C5: Limited Compute Capabilities. As a consequence of being
deployed in space, satellite servers’ capabilities must be limited.
The reason for this is that energy consumption and heat generation
must be kept low for economical reasons. Larger heat dissipation
mechanisms, batteries, or solar arrays lead to higher weight and,
subsequently, higher launch costs [6].

C6: No Physical Access. Another effect of placing servers on satel-
lites in LEO is that those servers cannot be accessed formaintenance.
Consequently, if a satellite or server fails, it remains failed and can
only be de-orbited.

C7: Fixed Server Capabilities. Not being able to access individual
servers directly also means that they cannot be upgraded. Over
the lifetime of a satellite, typically about 5 years [30], the server
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capabilities and, with it, the total capability of the constellation of
servers, remain fixed.

C8: Fixed Number of Servers. Horizontal scalability is also limited,
as we can place servers only on satellites that are part of the con-
stellation and the size of the constellation cannot be changed easily.
Launching and deploying additional satellites requires approval by
governmental agencies and competing space Internet companies
may lobby to limit constellation sizes, especially as LEO is a limited
resource [5, 31].

4 LEO EDGE APPLICATION REQUIREMENTS
In this section we derive requirements for building applications
using a LEO edge platform from the perspective of a developer
that is used to developing cloud applications. Some of the listed
requirements are not particular to the LEO edge but also apply
to, for example, edge platforms that are designed for terrestrial
networks.

R1: Deployment Close to Clients. The main advantage of edge
over cloud computing is that the services of an application can be
deployed close to their users. As such, if an application is deployed
on a LEO edge platform, the platform should take care that individ-
ual services are placed on the parts of the infrastructure that are in
proximity to their clients [3, 9].

R2: High Availability. As with cloud computing, developers ex-
pect their application to be highly available in a LEO edge en-
vironment as well. Consequently, a LEO edge platform needs to
abstract from the widely distributed and heterogeneous underlying
infrastructure to provide fault-tolerance [3, 23].

R3: Isolation. A single LEO edge platform can be used to host a
number of services from different developers. Ideally, this multi-
tenancy should be hidden from developers, as other services should
not interfere with each other. This comprises two dimensions: se-
curity and performance isolation. From a security perspective, a
service must neither be able to identify what other services are
using the platform, nor should it be able to read other services’
data [23, 29]. The performance of a service must also not be im-
pacted by other services, i.e., no colocated service should degrade
performance on the same machine for other services. Performance
degradation could, for example, occur when two such services share
common hardware without sufficient measures to limit resource
utilization [18].

R4: Familiar, Open Technology Stack. To simplify the transforma-
tion of cloud-client applications to cloud-edge-client applications,
developers should be able to develop services for LEO edge plat-
forms using a familiar technology stack, i.e., one that can also be
applied in the cloud. This encompasses processor architectures (e.g.,
x86, x64, arm), operating systems (e.g., Linux, Windows), and pro-
gramming languages (e.g., Java, Go, Python). The need for using
novel technologies may hinder the adoption of the platform given
a steep learning curve and larger upfront investments [23, 29].

R5: Flexible Deployment. Cloud computing’s “pay-as-you-go”mod-
el has been a major factor in its success as it enables flexible service
deployment without long term commitments. A similar deployment

model will likely increase adoption of a LEO edge platform. Devel-
opers want the flexibility to create new applications and remove
deprecated services while being charged only for the infrastructure
they use [2, 3].

R6: Elastic Scalability. Another important feature of cloud com-
puting is elastic scalability, i.e., that services can take advantage of
additional infrastructure if demand increases and release infrastruc-
ture if it decreases [4]. To this end, the cloud provides the illusion
of infinite resources. A LEO edge platform should provide a similar
illusion and provide the same level of scalability so that services do
not fail when demand increases. We note that in edge computing or
at the LEO edge this is especially difficult given that the distributed
underlying infrastructure cannot as easily benefit from resource
pooling [23, 27].

5 SUITABILITY OF OPA OPTIONS TO LEO
EDGE SCENARIOS

In this section, we analyze how different organization paradigms for
applications (OPAs) can be used for building a LEO edge platform
that satisfies the requirements presented in Section 4 considering
the unique characteristics of the LEO edge as discussed in Section 3.
For this analysis, we consider the following OPAs: virtual machines,
containers, and serverless functions.

R1: Deployment Close to Clients. To deploy a service close to
clients, two steps are necessary: First, client locations have to be
identified, either upfront in a static manner or dynamically at run-
time. Second, infrastructure in proximity has to be identified and
allocated so that the service can be deployed.

On the LEO edge, two factors make this a particularly difficult
problem. First, the LEO edge, by design, provides global coverage,
so global clients have to be considered, whereas on the terrestrial
edge a platform only covers a specific country or area. Scheduling
thus has to happen in a distributed manner rather than with a
central server, as a centralized scheduler, whether static or dynamic,
can easily become a bottleneck given the large amount of global
clients. Additionally, the combination of homogeneously deployed
satellite servers (C3) and heterogeneous client demand (C4) must
be taken into account. This scheduling component is an orthogonal
platform design question compared to choosing the right OPA, yet
we note that the traditional centralized cluster orchestrator in use
by container orchestration tools such as Kubernetes is a hindrance
in this context.

Second, satellites are mobile (C1). Ground stations connect to
their nearest satellite and expect their service to be available at
that satellite. As satellites orbit the earth, ground stations recon-
nect and applications have to either move across the LEO edge
infrastructure to remain stationary in relation to the clients or be
deployed across the entire infrastructure so that it is always acces-
sible. Virtual machines, containers, and serverless functions can
all be moved between servers as required to provide this virtual
stationarity, albeit with different complexity. Both virtual machines
and containerized services can be migrated live without downtime,
yet the larger footprint of a virtual machine leads to a higher migra-
tion overhead. For stateful applications, the overhead can quickly
become significant when migrations occur frequently, e.g., as it is
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the case for large satellite constellations and fast-moving satellites.
Stateless serverless functions, on the other hand, benefit from their
inherent concurrency. Static function code can be preemptively
propagated to nearby satellite servers and new instances can al-
ready be instantiated Alternatively, functions could simultaneously
be deployed on all satellite servers concurrently given the small
footprint of function code. They would not necessarily also have
to be instantiated at all times but could rather start once the first
request arrives (cold start). The overhead of frequent cold starts
may, on the other hand, be remedied by providing hints [1] about
client location in regards to the mobile satellites since their move-
ment is highly predictable. To manage state in a stateless serverless
environment, additional stateful services such as database systems
are needed. Here, a shared serverless database infrastructure may
be provided where techniques similar to VM and container migra-
tion can be employed, albeit with a smaller data footprint as only
application state has to be transferred [14, 15].

R2: High Availability. To provide high availability in the presence
of server or satellite failure, services need to be migrated to nearby
servers since servers cannot easily be repaired or replaced (C5).
This is problematic for stateful VMs and containers, as only a single
instance can be live at one time and this instance needs to be
reinstantiated on a new satellite to offload the service. In case of
satellite failures, a replicated live backup instance may even be
required so no state is lost. This increases service overhead, which
is problematic on limited satellite servers (C6). In case of stateless
VMs or containers, this is still possible but suffers from the same
migration costs discussed above. The serverless OPA is a better fit
in this case as backup functions can be deployed on nearby satellites
or across the entire constellation without state conflicts. If state is
managed by a shared serverless database, correct data backups or
replication can be efficiently provided to the application.

R3: Isolation. All OPAs provide some level of security isolation
depending on their implementation, so performance isolation is a
far more pressing issue on the limited hardware of a satellite server
(C5). For each OPA, the available resources can be provisioned
safely, i.e., that only the actually available resources are allocated.
On the other hand, over-provisioning has an economical benefit as
not every service uses its allocated resources at all times.

A VM’s resource allocation is static for its entire lifetime and
since it hosts an entire operating system, its required resources
are comparatively large. This coarsely grained resource allocation
is less efficient than the alternatives. For containers, which host
individual processes, resources do not have to be allocated but can
rather be limited to prevent leaking into other services. These limits
can also be adapted over the lifetime of a container. Depending
on the implementation of the serverless execution environment,
resources for serverless function instances may also be limited
or statically allocated, although function lifetime is considerably
shorter than that of containers or VMs. Resource allocation can
thus be maximized at all times without degrading service quality.

R4: Familiar, Open Technology Stack. All three OPAs are widely
used in the context of cloud computing and can thus be considered
to reflect familiar technology stacks. Nevertheless, we must also

consider that some of the decisions made regarding the infrastruc-
ture of satellite servers may “leak” through the layers of abstraction.
For example, if a novel “space-ready” processor architecture should
be employed to support the unique LEO environment (C5), devel-
opers would be unable to deploy a VM with an operating system
that does not support this architecture. Containers provide a higher
level of abstraction, so just the chosen language runtime needs to
support this architecture. Serverless functions provide the highest
level of abstraction since the platform also provides the language
runtime.

On the other hand, lower levels of abstraction, i.e., virtual ma-
chines, also offer more freedom when it comes to bringing one’s
own technology stack, so that it is easier to transfer familiar tech-
nologies from terrestrial edge and cloud to the LEO edge.

R5: Flexible Deployment. Shipping new VM and container images
or serverless function code to satellite servers is simple. All three
OPAs also provide the flexibility to quickly start and stop services.
Flexible deployment, however, also requires proper resource al-
location. As the servers’ capabilities are limited (C7 ) and scaling
services arbitrarily far up or out to meet a growing demand is not an
option (C8), merely the illusion of infinite resource can be provided.
To that end, a market-based approach where the limited resources
are provisioned for the highest bidder could be an option [2]. In
combination with a pay-as-you-go model based on resources used
in a specific time span, profit can be maximized. The efficacy of this
approaches improves with lower granularity of allocated resources,
i.e., serverless functions are more efficient than containers and VMs.
Of course, offloading as proposed for the availability requirement
(R3) above is also an option to some extent.

R6: Elastic Scalability. Given the heterogeneous service demand
(C4) in combination with a fixed amount (C8) of homogeneously
distributed satellite servers (C3) that cannot be upgraded (C7 ), off-
loading is required if the demand for one service exceeds the limited
capabilities of a single server (C5). Individual service requests or
even full services may need to be offloaded. Request offloading is
not possible given that only one copy of a stateful VM or container
can be instantiated at a time, so the entire service may need to
be moved to a nearby satellite server with enough capacity. For
stateless container or VM implementations, offloading of requests
is possible yet results in high resource costs. In contrast to service
migrations due to satellite mobility, changes in demand can also
not be predicted as easily. Additionally, containers and especially
VMs incur a large migration overhead. On the other hand, the low
latency ISLs make forwarding requests to nearby satellites easier.
In the case of serverless functions, this can be used to offload indi-
vidual requests in case the local server has no more capacity.

Overall, the three OPAs we analyzed use different levels of ab-
straction, from VMs to serverless functions. Our analysis shows
that more abstraction gives greater control to the LEO edge comput-
ing platform, which is important to satisfy developer requirements
in light of the unique characteristics of LEO edge infrastructure.
Especially mobility of servers is a characteristics that goes beyond
what terrestrial edge computing platforms must usually support in
practice. We thus conclude that a high level of abstraction benefits
upcoming LEO edge platforms and that the serverless paradigm
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will be the best choice for future work in this field. Of course, all
OPAs can be used, yet at different cost levels.

6 CONCLUSION & FUTUREWORK
In this paper, we analyzed the suitability of three OPAs for upcom-
ing LEO edge platforms. For this, we discussed the unique char-
acteristics of the LEO edge and derived requirements for building
applications using such a platform from the perspective of a devel-
oper that is used to developing cloud applications. We found that
low performance overheads, flexible reconfiguration and mobility
of application components, and strong support for multi-tenancy
are essential for a LEO edge platform. Based on this, we conclude
that the serverless OPA is the best fit to fulfill these needs, as indi-
vidual functions can provide efficient resource allocation even in
constrained environments such as LEO satellite servers – still the
other OPAs can also be used but have additional costs and limita-
tions. Finally, functions provide concurrency out of the box, which
simplifies mobility and flexible deployment; also multi-tenancy is
possible through the high degree of resource sharing. In future
work, we plan to design and evaluate such a serverless platform for
the LEO edge.

This paper should be seen as a foundation for new research on
LEO edge platforms, as a range of open research questions arises
from it: For example, while virtual stationarity can be provided by
anticipating satellite and earth movement, the concept of “stationar-
ity” should be further explored since it can be achieved on a ground
station, city, or even country level. In this regard, the efficiency of
different hand-off models should be investigated as well. Handing
off to the satellite that is closest to a specific ground station leads
to the best access latency yet increases overhead. More efficient
techniques such as employed in [6] should be evaluated in realistic
environments. Another question is how LEO edge-based platforms
can integrate with existing terrestrial cloud/edge/fog infrastruc-
ture – can LEO edge platforms benefit from them? Finally, testing
and benchmarking LEO edge platforms is hard without access to
the corresponding infrastructure. To that end, we also propose to
design testbeds for emulation or simulation of LEO edge platforms.
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