
AuctionWhisk: Using an Auction-Inspired

Approach for Function Placement in Serverless

Fog Platforms

David Bermbach1, Jonathan Bader2, Jonathan Hasenburg1, Tobias
Pfandzelter1, and Lauritz Thamsen2

1Mobile Cloud Computing Research Group, TU Berlin & Einstein
Center Digital Future, Berlin, Germany,

{db,jh,tp}@mcc.tu-berlin.de
2Distributed and Operating Systems Research Group, TU Berlin,

{jonathan.bader,lauritz.thamsen}@tu-berlin.de

Abstract

The Function-as-a-Service (FaaS) paradigm has a lot of potential as
a computing model for fog environments comprising both cloud and edge
nodes, as compute requests can be scheduled across the entire fog contin-
uum in a fine-grained manner. When the request rate exceeds capacity
limits at the resource-constrained edge, some functions need to be of-
floaded towards the cloud.

In this paper, we present an auction-inspired approach in which ap-
plication developers bid on resources while fog nodes decide locally which
functions to execute and which to offload in order to maximize revenue.
Unlike many current approaches to function placement in the fog, our ap-
proach can work in an online and decentralized manner. We also present
our proof-of-concept prototype AuctionWhisk that illustrates how such an
approach can be implemented in a real FaaS platform. Through a num-
ber of simulation runs and system experiments, we show that revenue for
overloaded nodes can be maximized without dropping function requests.

1 Introduction

Recently, the paradigm of fog computing has received more and more
attention. In fog computing, cloud resources are combined with resources
at the edge, i.e., near the end user or close to IoT devices, and in some
cases also with additional resources in the network between cloud and
edge [20]. While this adds complexity for applications, it comes with
three key benefits: First, leveraging compute resources at or near the
edge can lower response times, which is crucial for application domains

1

ar
X

iv
:2

10
8.

13
22

2v
2 

 [
cs

.D
C

] 
 2

3 
N

ov
 2

02
1



such as autonomous driving or 5G mobile networks [20, 21]. Second,
data can be filtered and pre-processed early on the path from edge to the
cloud, which reduces the data volume [77]. Especially in IoT use cases, it
is often not feasible to transmit all data to the cloud as the sheer volume
of produced data exceeds the bandwidth capabilities of the network [131]
or leads to significant energy consumption for wide-area networking [125].
Third, keeping parts of applications and data at the edge can help to
improve privacy, e.g., by avoiding “centralized data lakes” [97] in the
cloud. Overall, fog computing, thus, combines the benefits of both cloud
and edge computing.

While there are many open research questions in fog computing, a key
question has not been answered yet: Which compute paradigms will future
fog applications follow? In previous work [20], we argued that a serverless
approach – which we understand as Function-as-a-Service (FaaS) in this
paper – is a good fit for the edge. The main reason for this is that resources
at the edge are regurlarly considerably constrained so that provisioning
them in small function slices is more efficient than provisioning them using
virtual machines or long-running containers. Additionally, the idea of
having strictly stateless functions, separated from data management [10,
61], supports moving parts of applications seamlessly between edge and
cloud resources.

Now, assuming a serverless world in which application components
can run as functions on FaaS platforms in the cloud, at the edge, and
medium-sized data centers in between, the question of how to distribute
fog application components can be reduced to the issue of function place-
ment across multiple geo-distributed sites. In [19], we introduced the idea
of using auction-inspired mechanisms for function placement and evalu-
ated it in small-scale simulation experiments. We were able to confirm
our assumptions that this would be an efficient approach to decentralized
scheduling of functions over a distributed fog infrastructure and have ar-
gued for further work in this area. In this paper, we extend our previous
work and make the following contributions:

1. We describe a more general conceptual approach of using a decen-
tralized auction scheme to control function placement (Section 3).

2. We discuss practical engineering challenges for implementing this
approach in existing FaaS platforms (Section 4)

3. We present a simulation tool as well as the underlying system model
and use it to study the effects of various parameters on our auction-
based function placement (Section 5).

4. We implement our approach as a proof-of-concept prototype called
AuctionWhisk based on Apache OpenWhisk and evaluate our pro-
totype through experiments (Section 6).

5. We critically discuss the limitations of our work and identify future
research directions in the field (Section 7).

2



2 Background

In this section, we introduce and describe fundamental concepts of FaaS,
fog computing, and auctions. As all three topics have received major
attention in research in the last few years and different definitions have
emerged, we want to clarify the terminology we adopt in this paper. We
also give a short overview of Apache OpenWhisk which we used as basis
for our prototype system.

2.1 Function-as-a-Service (FaaS)

Within the field of cloud computing, the Function-as-a-Service (FaaS)
paradigm has emerged as the latest evolution in resource sharing. The
FaaS programming model facilitates highly scalable event-driven applica-
tions.

Developers deploy their code in the form of functions to a FaaS plat-
form that handles code invocation and scaling, lowering the management
burden for the consumer. Here, a function is a piece of business logic that
is executed in response to an event. Functions can be implemented in any
programming language as long as a runtime environment for the language
is supported by the target FaaS platform. Events can be web requests,
monitoring data, or even IoT sensor readings, thus making the FaaS ap-
proach a versatile option for many use cases. Logically, these functions
live only as long as they process a single event and are reset with every
invocation. This is usually achieved with lightweight virtualization tech-
niques such as containerization, microVMs, or unikernels [104, 2, 103],
which enable FaaS platforms to spin up and destroy isolated instances
quickly. As a result, no state can be persisted within a function across
multiple invocations, they are thus referred to as “stateless”. This is also
one of the main reasons for their scalability: A FaaS platform can spin up
multiple concurrent instances of a function to handle concurrent events,
while quickly shutting them down to free up resources for other functions.
The same characteristic makes FaaS functions a good fit to fog and edge
environments [20]: When migrating functions, there is no need to handle
session state within the function container. Instead, the function con-
tainer can simply be terminated on the original node and restarted on
the new node. In practice, FaaS functions are usually used in conjunction
with other platform services, especially in combination with storage and
database services that manage state, e.g., [31].

While scalability and low management overhead are clear advantages
for developers, operators have the benefit that their infrastructure can be
leveraged more efficiently. Instead of allocating coarsely grained resources
in the form of virtual machines or containers statically, these more finely
grained functions can be more efficiently mapped to underlying infras-
tructure and moved dynamically [9, 62, 80]. The platform provider can
then charge tenants based on actual usage. In 2021, all major cloud ser-

3



Target NamespaceExternal Service

FeedEvent 
Source

Action OutputTrigger Rule

Figure 1: The OpenWhisk programming model [121].

nginx

CouchDB

KafkaController

Invoker

Invoker

Invoker

Docker

…
Client

Client

Client

OpenWhisk

Figure 2: Components of an OpenWhisk deployment [121].

vice providers offer such a FaaS platform, e.g., AWS Lambda1, Microsoft
Azure Functions2, Google Cloud Functions3, or IBM Cloud Functions4.

2.2 Apache OpenWhisk

In addition to cloud-hosted FaaS platforms, a number of options for FaaS
platforms have also emerged in research and open source communities,
e.g., tinyFaaS [104], OpenLambda [62], or SAND [3]. Another noteworthy
example is Apache OpenWhisk, which is also at the core of IBM’s Cloud
Function service [10].

The OpenWhisk platform allows for custom functions, called actions,
to be executed in response to an event, the trigger. Figure 1 gives a
high-level overview of the programming model as shown in the official
OpenWhisk documentation.

Similarly, Figure 2 gives an overview of the OpenWhisk components:
At the core of the OpenWhisk platform, the Controller provides endpoints
to process triggers and schedules action invocations. The Invokers use
Docker containers to isolate different actions, with a new container being
spawned for each execution request. A Kafka queue serves as a buffer
between Controller and Invoker, e.g., to avoid unnecessary cold starts [18].
Additionally, a CouchDB instance holds actions, triggers, rules, and user-
related information such as credentials or namespaces; nginx is used as
the HTTP endpoint for the platform.

A complete installation of the OpenWhisk platform requires a sub-
stantial amount of resources which may not always be available to the
FaaS platform, especially when moving towards the edge. For this reason,
there is also a more lightweight version of OpenWhisk – Lean OpenWhisk.

1aws.amazon.com/lambda
2azure.com/functions
3cloud.google.com/functions
4www.ibm.com/cloud/functions

4



FogCore Network

Cloud

Edge

Edge

Edge

Edge

Intermediary

Intermediary

Client Devices

Figure 3: Overview of Cloud, Edge, and Fog Computing (adapted from [20])

Lean OpenWhisk removes components such as the CouchDB database and
Kafka queue in order to leave more resources for the function instances at
the cost of some platform features.

2.3 Fog Computing

As the interest in fog computing increased, we have seen the emergence of
different, often conflicting definitions of the term. In some cases, it is used
as a synonym for edge computing, in others it is used to refer to resources
that sit between edge and cloud or to all resources between cloud and
device. In this paper, we adopt the definition of [20], where fog resources
encompass all resources in edge, cloud, and in between, yet not those of
end devices. We refer to these end devices also as “clients” and mean
(embedded) IoT devices as well as mobile phones or computers, and to
resources between edge and cloud as “intermediary nodes” or “intermedi-
ary” in short. We show an overview of cloud, edge, and fog computing in
Figure 3.

This definition yields transparency from a client perspective, as clients
simply access fog resources unaware of whether a particular service resides
at the edge or in the cloud. Rather, they only see a singular “fog”.

In reality, the implementation of the fog is expected to follow a hierar-
chical model, where small edge nodes are collocated with access network
equipment such as radio towers and fewer yet larger intermediary nodes
are placed within the core network. Edge nodes will usually have the
capabilities of single hosts such as Raspberry Pis or a small local cluster,
while intermediaries are small- to medium-sized data centers. At the root
of the tree-like model is the cloud with its seemingly infinite compute and
storage resources. This leads to tradeoff decisions that have to be made
for each application: on the one end, edge nodes can provide low latency,
high bandwidth resource access for client devices, albeit with less available
or more expensive resources. At the other end, the cloud provides scal-
able and (seemingly) infinite resources, but at the cost of large network
distances to clients. Intermediary fog nodes fall somewhere in between.

5



2.4 Fog-Based FaaS Platforms

We expect the paradigm of fog computing to enable entirely new classes
of services and also to increase the quality-of-service (QoS) [17] of existing
applications. In order to leverage the capabilities of the fog, it has been
proposed to deploy applications on FaaS platforms that run on the fog
infrastructure [103, 104, 13, 44, 53, 5, 106].

Open source platforms such as OpenWhisk or OpenLambda [62] are
a good fit for cloud nodes and larger intermediary nodes, yet their larger
deployment overheads make them unsuitable for smaller intermediaries
or the edge [95]. On more constrained nodes, Lean OpenWhisk and tiny-
FaaS [104] are possible options for function deployment, whereas NanoLambda
is an option for on-device FaaS deployment [44].

2.5 Auctions

When demand for a product or service exceeds its available supply, auc-
tions can be used to reach market equilibrium (i.e., to match suppliers
with the optimal buyers). In an auction, all potential buyers enter bids
which ideally correspond to the amount they are willing to pay. An auc-
tioneer then sets auction rules which determine (i) how the winning bid(s)
are chosen and (ii) which price the successful buyers have to pay.

There is a large body of research on different auction rules. Here, we
focus on the so-called sealed-bid auctions in which potential buyers enter
their bids hidden from other potential buyers and the winner (or winners
if there is more than one auctioned item) of the auction is the buyer with
the highest bid. In these sealed-bid auctions, there are two fundamen-
tal rules for setting the price: in first-price auctions, the winner pays its
bid; in second-price auctions, the winner pays the bid of the second high-
est (unsuccessful) potential buyer. The latter strategy is recommended
whenever it is important that bids are truthful, i.e., they correspond to
the price that the potential buyers consider fair.

In the rest of this paper, we will not expressly differentiate between
different auction types but will implicitly assume either a first-price or
second-price sealed auction. In the approach that we will present, it does
not matter which pricing rule is used – they may affect prices but will not
affect whether a placement decision is reached.

3 Auction-Based Function Placement

While a number of FaaS systems is already available, as discussed in Sec-
tion 2.1, it is still not clear how to connect different FaaS deployments.
Ideally, we would want edge, intermediary, and cloud deployments to co-
ordinate function placement among each other. For instance, a request
arriving in the cloud should probably still be processed in the cloud. A
request arriving at the edge, however, should in most cases (exceptions
include functions that require data located elsewhere [61]) be executed
right at the edge. Only when the load on the edge node exceeds the avail-
able capacity should the request be delegated to an intermediary (and
likewise from intermediaries towards the cloud). This concept, similar to

6



cloud bursting, is based on the intuition of the cloud practically providing
infinite resources [85].

Based on this, we can conclude that function placement is straightfor-
ward when nodes have spare capacity (see also [103] for a more general
discussion) but becomes challenging when, for instance, an edge node is
overloaded. In such a situation, the question is which request should be
delegated to the next node on the path to the cloud as that request will
incur extra latency. For reasons of resilience and fault-tolerance in a geo-
distributed fog environment, such scheduling should ideally be managed
in a decentralized manner, i.e., through local decisions on each node. We
can imagine a number of objectives and criteria for such local decisions,
e.g., to prefer short-running functions over long-running ones (and vice
versa), to consider bandwidth impacts, to give some clients preference
over others, or to prefer latency-critical functions over less critical ones.

In contrast to these, we propose to use an auction-inspired approach,
which has been shown to lead to an efficient resource allocation in multi-
ple domains (e.g., [63, 43, 134, 128, 69, 132, 26, 65]): When application
developers deploy their function to an integrated fog FaaS platform, they
also attach two bids to the executable. The first bid is the price that the
respective developer is willing to pay for a node to store the executable (in
$/s), the second bid is for the actual execution of the function (in $/exe-
cution). In practice, both bids are likely to be vectors so that developers
could indicate their willingness to pay more on edge nodes than in the
cloud or even on a specific edge node. We explicitly distinguish bids for
storage of the executable and the execution as edge nodes might encounter
storage limits independently from processing limits. Both auctions closely
resemble a sequence of first-price sealed-bid auctions as discussed in Sec-
tion 2.5.

For ease of explanation, we use a first-price auction, although a second-
price auction would be preferable in practice. Furthermore, as there is
likely to be a minimum price equivalent to today’s cloud prices, we can
consider both bids a surcharge on top of a constant regular cloud price.
For sake of clarity and since it has no impact on the bids, we leave this
constant price aside in our explanation.

Storage Bids: The nodes in our approach – edge, intermediaries,
and cloud – analyze these bids and can make a local decision, i.e., act as
auctioneers, which is important for overall scalability and resiliency. We
assume that cloud nodes will accept all bids that exceed some minimum
base price. All other nodes will check whether they can store the exe-
cutable. When there is enough remaining capacity, nodes simply store
the executable together with the attached bids and start charging the ap-
plication based on the storage bid. When there is not enough disk space
left, nodes decide whether they want to reject the bid or remove another
already stored executable. For this, nodes try to maximize their earnings.
A simple strategy for this, comparable to standard bin packing, is to or-
der all executables by their storage bid (either the absolute bid or the bid
divided by the size of the executable) and remove stored executables until
the new one fits in. Of course, arbitrarily comprehensive strategies can be
used (in Section 5.5, we will show through simulation how changing this
auctioning strategy affects results) and could even consider the processing

7



Function Storage

Request all nodes to store the 
function

Node has 
sufficient 
storage?

Prefer storing new 
function to keeping 

one or more 
existing ones?

Store function on node Remove less attractive 
function(s)

Reject storage

Yes Yes

No

No

Figure 4: Deployment and storage process of a single function.

Function Execution

Function 
stored on 

node?
Attractive to 

execute 
function?

Execute function on node

No

Yes

Yes

Offload request to the next node 
in the hierarchy

No

Figure 5: Function execution process for a single node and a single function
execution. We assume that the cloud stores and executes all functions with bids
beyond a minimum price.

bid and the expected number of executions. In the end, this leads to a
situation where some or all nodes will store the executable along with its
bids. See also Fig. 4 for an overview of this auction step.

Please note that this process differs from standard auctions since it is
not clear upfront how many items are auctioned off, since this depends on
the size of the executables as well as the storage capacity of the respective
node.

Processing Bids: When a request arrives, nodes have to decide
whether they want to process said request. A node can process a request
if it stores the corresponding executable and if it has sufficient process-
ing capacity to execute the function. We can imagine arbitrarily complex
schemes for making the decision on whether to execute the request or not
if an execution is possible. For instance, nodes might try to predict future
requests (and decide to wait for a more lucrative one) or they might try
to queue a request shortly – all with the goal of maximizing earnings. In
fact, we believe that this opens interesting opportunities for future work.

8



For the explanations in this paper, we will assume that a node will
decide to process a request as soon as it is capable of doing so. This
means that upon receipt of a set of incoming requests, a node will follow
these four steps:

1. Reject all requests for which the executable is not stored locally.

2. Sort remaining requests by their bid (highest first) into a request
list.

3. While capacity is left, schedule requests from request list.

4. Reject all requests that exceed the capacity.

Rejected requests are then pushed to the next node on the path to the
cloud. As the cloud – by definition – stores all executables and has for all
practical purposes unlimited capacity, all requests will at least be served
in the cloud. See also Fig. 5 for an overview of this auction step.

Please note that this auction step is different from standard auctions as
well in that the number of auctioned items is unknown a-priori. Instead,
it depends on the compute demands and execution duration of requested
functions as well as available compute capacity on the respective node.

Overall, this approach solves the question of function allocation, all
functions are executed as close as possible to the edge; under high load,
it will also have the effect that prices increase towards the edge which is
a good incentive considering the high CapEx of installing an edge infras-
tructure. Of course, the effects of this allocation scheme also depend on
the behaviour and strategies of tenants and nodes in the system, as we
discuss in Section 7.

4 Challenges for Implementing the Ap-
proach in Practice

The abstract approach presented in the previous sections has a number
of assumptions on FaaS systems which are not necessarily true in exist-
ing systems. In this section, we discuss challenges for implementing the
abstract approach in real-world FaaS systems.

We identified four challenges (C1-C4) for practically implementing our
idea of an auction-based function placement in real-world FaaS systems.
We present each of the challenges first in general, before we discuss the
respective challenge using OpenWhisk as an example, as our proof-of-
concept prototype (Section 6) is based on OpenWhisk.

4.1 C1: Auctions Arrive in Batches

In our approach, nodes decide on the execution of specific functions by
comparing the execution bids of requests. For this, we proposed a simple
decision process where all incoming requests are ordered from high to low
bids and the highest bid gets accepted as the execution set is limited by
the required capacity. This process is sufficient as long as requests arrive
in batches periodically. However, in many real-word scenarios requests
will arrive arbitrarily and, therefore, it is not possible to directly compare

9



the execution bids of all incoming requests. One approach to address this
challenge, which we denote as C1, is collecting incoming requests for a
certain time, effectively creating windows over the incoming stream of ex-
ecution bids and, thus, the illusion of finite batches. The downside of this
approach is that extra latency (up to the window length) is added to each
request in each stage. Especially, requests that in the end are executed
in the cloud will be affected by this extra latency several times. On the
other hand, this approach is very simple to implement. It is even possible
to use windowing only when the local resource utilization exceeds a pre-
defined threshold, i.e., when there is a chance of requests being offloaded.
Another option is the use of statistical methods to estimate the arrival
of incoming requests and height of bids, to use the available capacity for
requests with relatively high bids based on the prediction model.

OpenWhisk In its architectural model, OpenWhisk separates load
balancing from the part which limits the number of allowed function calls
per minute. Therefore, the decision between execution and offloading
has to be shifted to the decision-making part, while the Load Balancer
employs strategies to select those functions that optimize the reward. To
implement the two previously described methods, the Load Balancer could
simply calculate an average execution bid over a certain timeframe. As-
suming that the node has sufficient free capacities to accept a request,
higher bids than the average get accepted while lower bids get offloaded.

4.2 C2: Storage Space Calculation

Our approach assumes that the size of a function’s executable is provided
along with its storage bid. It also assumes that executables with lower bids
get evicted to free up storage space whenever demand exceeds capacity.
In practice, however, it is difficult to accurately estimate the storage space
a function needs. Nevertheless, handling storage space well is important
as the storage on edge devices is often significantly constrained. Allow-
ing such nodes to store a certain number of functions might be a simple
solution, yet the size of functions can differ considerably. For instance,
a simple function may only need a few kilobytes (essentially, the cost for
storing a few lines of code in a text file or in memory) while the size of
rule-based classifier functions that bundle larger machine learning models
may be in the high megabytes. Consequently, the number of functions is
not directly suitable to constrain storage use. Instead, we need to consider
the exact amount of required storage space for functions. Furthermore,
most FaaS systems not only store the functions themselves, but also some
data on executions and other metadata, where the size of this information
grows over time and also needs to be taken into account. Arguably, the
best approach may be to not only run the auction decision upon deploy
time but rather to plan with a safety buffer in terms of storage space and
to periodically rerun the auction over the set of locally stored executables
and their metadata.

OpenWhisk OpenWhisk uses a database to store the functions and
another one to store the metadata and output of successful executions.

10



By setting a storage limit, each node can define the storage space available
for functions: Since the exact function size in OpenWhisk is not known
before the function is stored in the database, we have to ensure that the
free storage space exceeds the maximum function size that we allow Open-
Whisk to store by having a sufficiently large storage buffer5. Moreover, we
can use a second buffer to implement a limited storage for the metadata
of previously executed functions. Once this buffer is full, the system can
clean the history of execution data to ensure that the node can store data
on further executions, e.g., with an LRU eviction scheme. Thereby, the
buffers ensure that enough free space is available to store the functions,
past executions, and metadata.

4.3 C3: Compute Load Estimation

Our approach entails that the FaaS nodes can execute a certain number
of functions at the same time. In practice, however, one faces the chal-
lenge of having to estimate the supported number of concurrent function
invocations. Setting the number of handled functions #funcn as shown
in Equation 1, where memn is the node’s available memory and memreqi

the memory requested by function i ∈ {1, 2, . . . ,m} (as in existing cloud
FaaS deployment models), could lead to a simple result.

#funcn =
memn

1
m
×

m∑
i=1

memreqi

(1)

However, especially simple functions often do not fully use their re-
served resources. In addition, most FaaS system support multiple pro-
gramming languages and Docker containers, so that the resource usage
of even similar functions can differ significantly. Therefore, FaaS systems
can overbook the requested memory and often only distinguish between
available and unavailable execution machines depending on the compo-
nents’ response times. In practice, we would suggest to couple the slight
overbooking of memory resources with implicit CPU limits based on the
number of local cores and the amount of compute capacity allocated to
function instances.

OpenWhisk Instead of using a fixed amount of concurrent functions
per Invoker, OpenWhisk distinguishes between healthy and unhealthy In-
vokers. However, when deploying OpenWhisk on more restricted hard-
ware with capacities only for a limited number of Invokers, it is important
to have a good estimate for the function load. In addition, an unhealthy
Invoker is identified as such after not responding for a certain time, yet
this delay can be an issue for low-latency use cases, since latency can
grow considerably before the Invoker is switched into an unhealthy state.

5An OpenWhisk version released while we were writing this paper changed this: Open-
Whisk no longer checks whether the available storage exceeds the maximum function size.
Instead, it checks whether the available storage size exceeds the actual function size plus an
estimated buffer based on the base64 encoding in CouchDB. We decided not to change this
in the paper text as our prototype fork is based on the previous version and also since it does
not really change the overall problem that the precise storage needs are unknown.

11



Before simply distinguishing between healthy and unhealthy controllers,
OpenWhisk used a method that checked the system load through active
concurrent invocations in the system. This would arguably be a better
strategy for low-latency use cases but may be problematic when resources
are already constrained as on the edge.

4.4 C4: Knowledge About the Next Node To-
wards the Cloud

Our approach assumes that nodes have knowledge about the next nodes
towards the cloud. However, fog and IoT environments are often dynamic
and latency between devices changes over time. In addition, nodes may
fail and so can, correspondingly, any specific data transmission route to-
wards the cloud. Therefore, practical implementations of our approach
require a communication mechanism that allows forwarding to the cloud
even in situations where the next node toward the cloud is not known
and that is also robust against individual node failures. This could, for
instance, be achieved by storing the full path to the cloud on every node
rather than the identity of the next node.

OpenWhisk OpenWhisk was designed for deployment in a single cloud
datacenter, not for fog environments. Therefore, offloading and shifting
requests inside a network of OpenWhisk deployments is not part of Open-
Whisk yet. In fact, it may be quite hard to implement since the informa-
tion necessary for an offloading decision may be distributed over multiple
components and machines of the OpenWhisk cluster. This means that the
main challenge for OpenWhisk may be to transfer the abstract concept
outlined above into a concrete implementation.

5 Evaluation: Simulation

In this subsection, we describe insights we gained from simulation. Namely,
we ran three different simulation experiments: The first analyzes the effect
of processing prices on function placement and latency depending on the
request load. The second studies the effect of storage prices on function
placement and latency depending on the demand for storage. The third
experiment comprises a larger simulation in which we study how different
executable replacement strategies, that are applied when running out of
storage capacity, affect the storage and processing earnings of nodes.

5.1 Simulation Implementation

To evaluate our approach, we have implemented a simulation tool in
Kotlin which is available on GitHub6. In the tool, we distinguish three
types of nodes: edge, intermediary, and cloud. All three node types have
distinct storage and processing capacities. Since we assume that all re-
quests require the same compute power but may take arbitrarily long, the

6github.com/OpenFogStack/faas4fogsim

12



processing capacity of a node is specified as the number of requests which
can be handled in parallel. The storage capacity of a node is specified
as the number of function executables that the node can store on aver-
age. All nodes treat bids in the way described in Section 3. For future
research on different auction strategies, it is only necessary to change the
methods offerExecutable and offerRequests in ComputeNode.kt which
implement the respective allocation rules (see Section 2).

Beyond the parameters already mentioned, users can specify the node
setup (number and type of nodes and their interconnection), average la-
tency for request execution as well as latency between edge and inter-
mediary or intermediary and cloud, average storage and processing bids,
the number and average size of executables, as well as the number of
requests that should arrive at each edge node. The simulation comes pre-
configured with a set of standard settings (defined in Configuration.kt)
that can be changed to customize the simulation for various purposes.
Our implementation also assumes that bids are identical across all node
types, i.e., developers will bid and pay the same for execution and storage
– no matter on which node.

To support reproducibility of simulation runs, the tool explicitly sets
the random seed; parameters specified as average X follow a uniform
distribution over a specified range.

5.2 Configuration

For the first two simulation experiments, we had one edge, intermediary,
and cloud node and simulated a period of two minutes; we also set the
average function processing latency as 30ms, the average edge to interme-
diary latency as 20ms, and the average intermediary to cloud latency as
40ms. For the third simulation experiment, we extended the topology: it
comprised 5 edge nodes per intermediary, 3 intermediary nodes, and one
cloud node, i.e., 19 nodes in total.

In the first experiment, we set the storage capacity of each node to
a very large value so that function execution was only delegated towards
the cloud if a node did not have enough processing capacity available. All
other settings remained as defined in the standard configuration. As a re-
sult, anything up to 166req/s could on average be handled at the edge since
the edge could process 5 requests concurrently. Furthermore, anything up
to an average of 832req/s could be handled at edge and intermediary since
the intermediary could process 20 requests concurrently. Anything beyond
this required the cloud for handling the load. Each request had a random
processing bid bprocessing ∼ U[50,150]. We repeated this experiment with
varying request load: from 100 to 10,000req/s. For our 2min (simulated
time) experiments, we thus simulated 12,000 to 1,200,000 requests.

In the second experiment, we set the processing capacity of each node
to a very large value so that function execution was only delegated to-
wards the cloud if a node did not have enough storage capacity to store
the function executable. All other settings remained as defined in the
standard configuration. As a result, edge nodes could on average store 10
functions, intermediaries 50 functions, and the cloud an unlimited amount
of functions. Executable sizes were randomly chosen as size ∼ U[0.5,1.5].

13



Each executable also had a random storage bid bstorage ∼ U[50,150]. We
repeated this experiment with varying numbers of executables starting
with 5 (which should still all fit on the edge node), over 50 (on average,
edge nodes stored 20% of all executables and intermediaries still stored
most of them), up to 100 in steps of 5.

In our third experiment, we evaluated the impact of our simple node
strategy on function execution. As we have discussed, non-cloud nodes
make their decision about which function executables to accept or drop
based solely on storage bids and do not consider the processing bid. We
added a stickiness parameter to the simulation that describes the prob-
ability of a node ignoring an incoming function executable with a higher
storage bid in favor of keeping its current set of function executables:
A stickiness value of 0 corresponds to the default auction case from the
other two simulation experiments, a stickiness value of 0.5 means that a
bid which would normally evict other executables will do so with only a
50% probability, a stickiness value of 1 means that a node will never evict
already stored executables (it will “stick” with the already stored ones).
Please, note that we do not consider such a stickiness-based approach as
a good strategy (as in “randomize if you follow the auction rules or not”).
Instead, different strategies, e.g., based on local preferences regarding cer-
tain users, will lead to different outcomes in terms of stickiness – hence,
this is only a parameter to capture implications of a broad range of strate-
gies as part of our simulation model, i.e., variability of the sets of stored
executables. For this experiment, we set the number of executables to
100. All other settings remained as defined in the standard configuration
except for our updated topology (19 instead of 3 nodes). As a result,
executable sizes were randomly chosen from U[0.5,1.5], which means that
edge nodes stored on average 10% and intermediaries stored on average
50% of all executables.

5.3 Simulation Experiment 1: Effect of Process-
ing Prices

As can be seen in Figure 6a, the simulated system is lightly loaded up to
about 400req/s, since no requests are delegated towards the cloud. The
intermediary begins to handle more requests than the edge at 300req/s
and the cloud begins to handle more requests than the intermediary at
1500req/s.

For the earnings, we can see in Figure 6b that the average price for ex-
ecuting a function at the edge gradually increases as the edge node selects
only the most lucrative requests for execution if it has a choice. For the
intermediary, the average price remains slightly below 100 until 900req/s,
then it also starts to gradually increase. The cloud only processes its first
11 requests at 400req/s. Since the intermediary only forwards the requests
with the lowest processing bids, the cloud earnings are also quite low for
this request rate.

For latency, we can see in Figure 6c that it linearly increases with
the load as more and more requests (the lower paying ones) are no longer
served on the edge but rather delegated to intermediary and cloud. We can

14



100 200 300 500 1000 2000 5000 10000
Requests/Second

0

5

10

15

20

25

Av
er

ag
e C

on
cu

rre
nt

 R
eq

ue
sts

Machine
Edge
Intermediary
Cloud

(a) Number of concurrent function executions

100 200 300 500 1000 2000 5000 10000
Requests/Second

80

90

100

110

120

130

140

Av
er

ag
e P

ric
e/R

eq
ue

st

Machine
Edge
Intermediary
Cloud

(b) Average price per function execution

100 200 300 500 1000 2000 5000 10000
Requests/Second

20

40

60

80

100

120

140

La
ten

cy
 [m

s]

Kind
Minimum
Average
Maximum

(c) Request latency

Figure 6: Simulation Experiment 1: Studying the effect of varying request load
when only execution capacities are auctioned.

15



also see the bump in maximum latency when the first request is executed
in the cloud.

Overall, this experiment shows that even the simple auction scheme
that we implemented is indeed an efficient mechanism to handle function
allocation across fog nodes with the goal of determining the placement
based on payment preferences of application developers.

5.4 Simulation Experiment 2: Effect of Storage
Prices

In this experiment, we analyze what happens when the number of distinct
functions increases (far) beyond the number of executables that can be
stored on the edge and later even the intermediary. As can be seen in
Figure 7a, the edge node begins to forwards requests to the intermediary at
about 10 executables, while the intermediary begins to forwards requests
to the cloud at about 50 executables (which is as expected based on our
simulation parameters). The more functions, for which no executable is
stored locally, are requested, the more requests are offloaded towards the
cloud.

This is also visible from the average storage price shown in Figure 7b:
the edge does not have any choice of executables when only five are offered
so it also has to accept low storage bids. Likewise, the intermediary
only starts to evict executables once it exceeds its capacity of about 50.
Afterwards, both curves gradually increase towards the upper limit of 150
which, however, is not reached in this experiment as the randomization
means that only 1% of the executables will be offered at a storage bid
of 150. In addition, the average storage price in the cloud is about 100
which is as expected as the cloud accepts all executables in our simulation
setting.

Figure 7c shows how an increasing number of executables also leads to
increasing request latency: With every additional executable, the share
of matching executables available at the edge (or on the intermediary)
decreases so that requests are increasingly delegated towards the cloud
since the function can, without an executable, not be executed.

Overall, this experiment shows that our auction-based approach is
an efficient mechanism to determine distribution of binaries across a fog
network when there is a lack of storage capacity. Based on the experiment
results, we would also argue that both bids should not be considered
separately: From the perspective of an edge node, storing only the n
executables that have the highest storage bid may not be optimal. For
instance, if the (n+1)st executable (in terms of storage bid) is invoked
significantly more often than the nth, storing the (n+1)st instead of the
nth may offer higher earnings. The optimum, here, depends on request
rates, execution bids, storage bids, and their respective distributions.

16



5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Number of Executables

0

5

10

15

20

25

30

35

Av
er

ag
e C

on
cu

rre
nt

 R
eq

ue
sts

Machine
Edge
Intermediary
Cloud

(a) Number of concurrent function executions

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Number of Executables

70

80

90

100

110

120

130

140

Av
er

ag
e S

to
ra

ge
 P

ric
e

Machine
Edge
Intermediary
Cloud

(b) Average storage price per stored function exe-
cutable

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Number of Executables

20

40

60

80

100

120

140

La
ten

cy
 [m

s]

Kind
Minimum
Average
Maximum

(c) Request latency

Figure 7: Simulation Experiment 2: Studying the effect of varying number of
executables when only the storage capacity is auctioned.

17



0.0 0.2 0.4 0.6 0.8 1.0
Stickiness

100

110

120

130

140

Av
er

ag
e S

to
ra

ge
 P

ric
e

Machine
Edge
Intermediary
Cloud

(a) Average storage price per stored function exe-
cutable

0.0 0.2 0.4 0.6 0.8 1.0
Stickiness

1100

1200

1300

1400

1500

St
or

ag
e E

ar
ni

ng
s

(b) Distribution of storage earnings across Edge
nodes

0.0 0.2 0.4 0.6 0.8 1.0
Stickiness

5000

5200

5400

5600

5800

6000

St
or

ag
e E

ar
ni

ng
s

(c) Distribution of storage earnings across interme-
diary nodes

Figure 8: Simulation Experiment 3: Studying the effect of varying degrees of
stickiness in executable storage on storage earnings (one simulation run).

18



5.5 Simulation Experiment 3: Larger Deployment
and Analysis of the Effect of Stickiness in Exe-
cutable Management

In this experiment, we show that our simulation model is also suited for
evaluating larger node topologies and analyze how different node strate-
gies affect storage and processing earnings. As can be seen in Figure 8a,
the average storage price for edge and intermediary nodes increases with
a lower function stickiness. The reason for this is that a stickiness level of
0 means that the node will store the top X highest paying executable (in
our example: on average the top 10 and top 50 out of 100 for edge and
intermediary nodes respectively). A stickiness level of 1 means that the
node will store the first X executables that are offered – essentially a ran-
dom subset depending on the order in which storage requests come in7. In
general, it is therefore best to strictly follow our auction approach and to
replace low-bid executables for maximizing the earnings from executable
storage. There are, however, situations in which a node might benefit
from not replacing an executable. For example, not replacing two small
executables with a single large executable with a higher bid can result in
higher total storage earnings. This can also be seen in Figure 8b which
shows that some edge nodes achieved higher storage earnings when ignor-
ing 20-80% of storage requests compared to accepting all requests. Due
to the larger overall storage capacity, this phenomenon does not matter
for intermediary nodes in our simulation setup (Figure 8c).

Figure 9a shows that function stickiness has virtually no effect on the
average number of concurrent requests carried out by each node; edge
nodes have a load of 50% on average while intermediary nodes are fully
loaded. The reason for this effect is that requests follow a uniform dis-
tribution across all executables. For stickiness levels of 0 and 1, all edge
nodes (and intermediary nodes likewise) store the same set of executa-
bles. For values in between 0 and 1, there is some variance across nodes
as some edge nodes (and intermediary nodes likewise) execute a few more
requests. Due to the uniform distribution of requests, this variance is,
however, so low that the curves which show it (using the same formatting
as Figure 8a) are not visible in the chart.

Furthermore, Figure 9b shows that the median processing earnings
are very similar for all nodes that periodically ignore storage requests
since there is no correlation between processing and storage bids in our
simulation setup. A higher function stickiness can lead to higher earnings
for edge nodes, albeit at increased risk, as it depends on the processing
bids for the two executables which are supposed to be swapped (or not).
The biggest gamble for an edge node is a stickiness of 1: we repeated the
experiment with different seeds and the processing earnings for such edge
nodes can be very high or low compared to all other outcomes. The reason
for this is that a stickiness level of 1 essentially picks a random subset of

7In our simulations setup, storage requests were sent in ascending order ordered by bid.
Hence, the stickiness level of 1 results in the minimum possible storage earnings for the
respective node.

19



0.0 0.2 0.4 0.6 0.8 1.0
Stickiness

0

50

100

150

200

250

300

350

Av
er

ag
e C

on
cu

rre
nt

 R
eq

ue
sts

Machine
Edge
Intermediary
Cloud

(a) Number of concurrent function executions

0.0 0.2 0.4 0.6 0.8 1.0
Stickiness

0.90

0.95

1.00

1.05

1.10

1.15

Pr
oc

es
sin

g 
Ea

rn
in

gs

1e6

(b) Processing earnings for edge nodes

0.0 0.2 0.4 0.6 0.8 1.0
Stickiness

8.70

8.75

8.80

8.85

8.90

Pr
oc

es
sin

g 
Ea

rn
in

gs

1e6

(c) Processing earnings for intermediary nodes

Figure 9: Simulation Experiment 3: Studying the effect of varying function
stickiness on processing earnings (one simulation run).

20



executables which each have random processing bids, thus, resulting in
fully random processing earnings.

The low variability levels for both stickiness levels of 0 and 1 in Fig-
ures 9b and 9c, where all nodes of the respective type store the same ex-
ecutable set, result from the variability of requests across different nodes.
It can be expected to asymptotically converge to 0 for very long running
simulation experiments due to the uniform distribution of requests across
executables and nodes.

Figure 9c shows that for intermediary nodes it is a beneficial strategy
to choose a stickiness parameter between 0 and 1. The reason for this is
that, in our setup, intermediary nodes maximize the probability of storing
a different set of executables than their corresponding edge nodes. This
means that requests offloaded by the edge due to a missing executable
are more likely to find that executable on the intermediary (in the best
case in our setup around 50% rather than 40% probability), i.e., the exe-
cutable has a choice from more requests and can achieve higher processing
earnings. This effect is less pronounced when edge nodes are overloaded.

Overall, this shows that nodes should consider both processing and
storage bids in an optimal strategy. They should also consider the fre-
quency of execution requests for different executables. Finally, interme-
diary nodes should closely monitor the strategies of their edge nodes (or
other intermediary nodes which are child nodes of them) and adapt corre-
spondingly. For this, it may suffice to pretend that their respective child
nodes are end devices sending requests and, otherwise, follow the same
workload prediction strategies as edge nodes.

6 Evaluation: Prototype and Experiments

In this section, we present our proof-of-concept prototype AuctionWhisk
which implements our auction-based approach in the open source FaaS
platform (Lean) OpenWhisk. We then evaluate our approach through a
number of experiments with AuctionWhisk.

6.1 Prototypical Implementation of AuctionWhisk

Our AuctionWhisk prototype is based on OpenWhisk and also supports
the Lean OpenWhisk deployment type, which we refer to as Lean Auction-
Whisk. Our auction-based function placement approach consists of two
rounds, we therefore decided to split the description of our implementa-
tion into two parts: First (Section 6.1.1), we describe how to handle the
storage bids and the resulting auction round. Second (Section 6.1.2), we
present how we manage the execution of functions based on auction bids.
We have made AuctionWhisk available as open source8.

6.1.1 Storing Function Executables

Before a function can be called, the executing node has to store the ex-
ecutable locally. OpenWhisk relies on CouchDB for storing function ex-

8github.com/OpenFogStack/AuctionWhisk

21



ecutables9. In this context, there are two relevant CouchDB databases:
whisk local whisks stores the function executable and whisk local activations

stores information about successful executions, including output and meta-
data. In AuctionWhisk, we extended the data model of whisk local whisks

to also store the bids along with the executables and adapted the com-
ponents interacting with this data model to also pass on the additional
data.

In Section 4.2, we discussed challenge C2 and possible solutions for how
nodes can estimate the required storage. In AuctionWhisk, each node can
define the storage space available for functions by setting a configuration
parameters for the per-function storage limit as well as the total storage
space available to AuctionWhisk. Both limits include all metadata of
executed functions in whisk local activations which therefore should
be garbage-collected periodically.

As a limitation of the original OpenWhisk, the actual storage size of a
function is unknown. This also means that the Controller, which decides
on accepting or rejecting a function executable, cannot directly know the
actual amount of used storage. To circumvent this problem, we decided
to use the per-function storage limit (which by default in OpenWhisk is
48MB) as a proxy for the actual function size. Therefore, when Auc-
tionWhisk is offered a new function executable, the system calculates the
currently used storage as the number of stored executables times the per-
function storage limit and compares it to the total storage limit. If the
estimated free space is larger than the per-function storage limit, Auction-
Whisk accepts the new executable and inserts it into the database. If not,
AuctionWhisk retrieves the executable with the lowest storage bid and
compares the bid to the new executable’s bid. The one with the higher
bid is then stored.

While this means that we reserve the per-function storage limit for
every function, even for those that are possibly only a few KB in size,
we believe that this is an elegant solution to the problem: The decision
of which executables to store can easily be made and storage needs to
be planned with a safety buffer anyhow since any execution of the func-
tion will increase the amount of stored data and functions may also need
temporary disk space while executing. For a production environment,
one could also analyze the actual function size after the deployment and
use that for calculating the currently used storage for later requests. We
decided not to do this in our prototype as this would require significant
modifications to the OpenWhisk code base.

6.1.2 Executing Function Calls

Upon invocation, OpenWhisk has to decide whether to execute or to of-
fload the request based on the execution bid. This challenge is discussed
in Section 4.4 as C4, where we assume that the nodes have knowledge
about the next node towards the cloud. Once a request arrives at our
node, the system checks whether the function executable is available lo-
cally. If this is not the case, standard OpenWhisk would return an error.

9OpenWhisk refers to functions as actions.

22



In AuctionWhisk, however, the request is in that case forwarded to the
next node on the path towards the cloud. The downside of this approach
is that requests that target a function that does not exist anywhere in
the system will always get their (high-latency) error message from the
cloud. We believe, however, that this is acceptable since (i) we expect
this scenario to be rare and (ii) the benefit of not having to store informa-
tion on all functions on every FaaS node far outweigh this disadvantage.
For instance, FaaS nodes in the US do not have to be aware of functions
relevant only in Australia. We implemented this offloading behavior as
part of the Controller and forward the request directly to the next node
– ideally, an external messaging system would take care of delivering the
request to the next available node on the path to the cloud.

As discussed with C3 (Section 4.3), it is relatively hard to estimate
the available compute capacity, i.e., how many additional requests can
be accepted. Since OpenWhisk already uses the number of concurrent
function executions to estimate CPU load, we have decided to adapt this
approach in AuctionWhisk. We introduce a configurable parameter that
allows users to define a time window length as well as the number of
parallel requests that can be accepted in that time window. This is similar
to a previous implementation in OpenWhisk but can be decided in the load
balancer part of the Controller as it does not require information from all
invokers of the node. If the request rate and the kind of function requested
stays relatively constant, this approach allows a platform operator to find
a good combination of configuration parameters.

If the average duration of requested functions increases, requests will
be queued briefly; if it decreases requests will be offloaded even though
there is still capacity left. On the one hand, this solution is simple to
implement as it only requires some modifications to the existing code base.
It also allows for a more fair and fine-grained scheduling of resources by
the operating system scheduler as processes can requests all resources they
need. On the other hand, it also increases the effects of “noisy neighbors”,
i.e., breaking the isolation of function containers [17]. An approach to
restrict CPU cores or even cycles is also feasible using Docker [119, 57],
but would reverse that trade-off.

As discussed in C1 (Section 4.1), the auction-based approach suffers
from the problem that requests will not arrive in batches unless the sys-
tem is completely overloaded. This means that AuctionWhisk will get
individual requests and then has to decide whether to execute them or
not. We have implemented two different approaches for this: In the first,
the Controller simply creates micro-batches by queuing requests in a short
time window and then running an auction round over them. This is as
close as possible to the vanilla auction approach which we described in
Section 3. The downside of this is that every request on average gets half
the time window length as additional latency which will only be accept-
able if the execution duration of requested functions is much greater than
the time window length.

The second approach which we have implemented (and which we will
later use in the experiments) avoids this extra latency and for this slightly
deviates from the auction approach. It introduces a new Decision Man-
ager component within the Controller which uses a moving time window

23



Edge Node Intermediary Node Cloud Node
Description CPX21 CPX41 CPX51

CPU 3 vCPU 8 vCPU 16 vCPU
Memory 4 GB RAM 16 GB RAM 32 GB RAM
Network 10 GBit 10 GBit 10 GBit
Storage NVMe SSD NVMe SSD NVMe SSD

OS Ubuntu 18.04 LTS Ubuntu 18.04 LTS Ubuntu 18.04 LTS

Table 1: System hardware configurations used for conducting the experiments.

(default length one second) and tracks standard statistical aggregates such
as average, median, min, max, etc. on the bids encountered in the time
window (i.e., by default it knows the aggregates about all requests from
the last second). Users can then define a custom function that calculates a
threshold value based on these values – the default is the average. If there
is enough capacity (as described in the paragraph above), requests whose
bid exceeds that threshold will be accepted, all others will be offloaded.
This is a bit different from the “pure” auction approach described in Sec-
tion 3 but has the same or a very similar effect: When the average bid of
requested functions stays constant, the threshold will adapt itself based
on load patterns until the node executes only the highest paying func-
tions and is fully utilized. When the average bid of requested functions
increases, the threshold quickly adapts to the higher earning potential – it
lags slightly behind depending on the window length but achieves at least
the same earnings as in the constant scenario. When the average bid of
requested functions decreases, the threshold also adapts quickly but may
still reject a few requests near the threshold depending on the window
length and how fast the average bid is decreasing. Overall, we believe
that this is a good solution which can easily be implemented in practice
but, of course, alternative implementations that actually predict future
requests and thus achieve higher earnings are possible.

6.2 Experiment Setup

We also evaluated our approach through three experiments with Auction-
Whisk. All three experiments used the same setup: The fog topology
consists of one edge node, one intermediary fog node and one cloud node.
The hardware configuration of the nodes can be found in Table 1. Please
note that we used a relatively large edge node since OpenWhisk, the basis
of AuctionWhisk, does not work well on smaller nodes [104].

Since we did not have access to a real fog infrastructure, we injected
artificial latency based on netEm10 similar to the approach used in Mock-
Fog [54, 57] – see Figure 10 for an overview. Between the edge node and
the intermediary node we set an average latency of 20 ms, the latency
between the intermediary node and cloud node, we set to 40 ms, while
our benchmarking client had a latency of 25 ms to the edge node (these
numbers include both real and artificial delays). On the edge node, we

10man7.org/linux/man-pages/man8/tc-netem.8.html

24



AuctionWhisk Deployment

25ms 20ms 40ms

Figure 10: Experiment setup: average network latency from client devices (on
the left) via edge and intermediary fog nodes to the cloud.

installed Lean AuctionWhisk, the intermediary and cloud node ran stan-
dard AuctionWhisk.

As discussed above, AuctionWhisk uses two parameters to track avail-
able compute capacity: A moving time window and the number of re-
quests which can be accepted in said time window. For the experi-
ments, we set the time window length to 1000ms and limited the num-
ber of requests for that time window to 6, 12, and 1000 respectively
(edge/intermediary/cloud). We also increased the corresponding vanilla
OpenWhisk parameters: For invocationsPerMinute we used 20,000 in-
stead of 60 and for concurrentInvocations we used 240 instead of 30 to
ensure that our experiments ran without failure. Without changing these
parameters, only 60 invocations per minute and 30 concurrent invocations
would have been allowed. These parameters were determined based on a
number of initial experiments since standard OpenWhisk often has trou-
ble coping with large numbers of parallel requests [104] and we wanted to
avoid frequent error responses in our experiments.

As experiment workload, we used a Node.js 10 implementation of the
Sieve of Eratosthenes algorithm [93], called with the argument 100, which
was then automatically distributed over all nodes with a our deployment
tool. For creating load, we used Apache JMeter11 and configured it to have
several thread groups with several threads each which invoke the deployed
functions for a period of 180 seconds. As the concrete thread/thread
group configuration varied between the experiments, we point out the
exact numbers in the respective sections.

6.3 Experiment 1: Request Latency of Auction-
Whisk vs. a Cloud-Only OpenWhisk

As the overall goal of the AuctionWhisk approach is to bring the benefits of
edge and fog computing into the FaaS world, we ran a baseline experiment
in which we compare request latency of AuctionWhisk to a cloud-only
deployment of OpenWhisk.

We used the standard setting from Section 6.2 and set our JMeter
configuration to four thread groups. For each thread group, we started
with two threads and increased that number in steps of two up to 20
threads per thread group (80 threads in total). Each thread issued a
request every three seconds. We deployed one function per thread group
and assigned it a random bid (uniformly distributed over the interval
[50;150]). As a warm-up phase, we overloaded the target system for a

11jmeter.apache.org

25



short time to warm-up containers and to avoid cold starts during the
actual experiment [86, 18]. All experiments were repeated five times.

Figure 11 shows the results of all runs of experiment 1. With an
increasing number of threads, as more and more requests are offloaded to-
wards the cloud (Figure 11a), the median latency increases (Figure 11b).
The first configuration with eight concurrent threads yields a latency of
approximately 45ms, while all requests are handled at the edge. The con-
figuration with 16 threads shows that the median latency is only slightly
higher. However, the plot indicates that the edge slows starts offload-
ing requests towards the intermediary node. At 24 threads, the edge
starts offloading a larger percentage of requests to the intermediary node,
which leads to a higher 75th percentile and a higher whisker. Running
40 threads, one can see that the median increases considerably. This is
due to the fact that at this point the edge offloads more than 50% of all
requests. Further, we observe a second change in the 75th percentile once
there are 64 threads running: At this time, the intermediary starts of-
floading a large percentage of requests to the cloud. The outliers from the
configuration with 56 threads indicate that single requests get offloaded
at this point.

The CDF plot in Figure 12 also confirms these observation: The line
for the experiment with 8 threads shows a high slope and then plateaus
close to value of 1 – this indicates that almost all requests are processed
on the edge. For all other configurations, we can see two “plateaus” (with
a positive but low slope) which show the load levels which can still be
sustained on one tier before offloading towards the cloud12.

For comparison, we also ran a cloud-only deployment with standard
OpenWhisk in which we used a machine large enough to sustain the load
level resulting from 64 threads. To assert a fair comparison (see Figure 10),
we artificially delayed requests by 85ms (=25ms + 20ms + 40ms) and ran
the exact same workload as in the AuctionWhisk experiments with 32 and
64 threads. As we can see in Figure 13, AuctionWhisk serves requests at
least as fast as the cloud-only deployment of OpenWhisk13. While this is
as expected, it shows that the AuctionWhisk approach allows OpenWhisk
to efficiently leverage resources at or near the edge.

6.4 Experiment 2: Effect of Storage Prices

The setup of this experiment is very similar to Simulation Experiment 2
from Section 5: We analyze the effect of storage bids on function place-
ment and design the experiment in a way that asserts that the processing
bids do not affect the outcome. In the experiment, we deployed the exact
same function 1000 times with a random bid from the interval [50;150]. To
study storage bid effects in an isolated way, we artificially limited the stor-
age capacity of the edge and intermediary node to assert that they could
store only 100 and 500 functions respectively. In practice, developers can

12If we had used n tiers instead of three tiers in our experiment, we would have expected
(n− 1) “plateaus”.

13The CDF does not reach the level of 1 in our chart as OpenWhisk often suffers from
latency spikes and failed requests [104].

26



8 16 24 32 40 48 56 64 68 72 80
Number of Threads

0

20

40

60

80

100
Re

qu
es

ts 
Ha

nd
led

 at
 E

dg
e i

n 
%

(a) Impact of of increasing load on the percentage
of requests that the edge can handle

8 16 24 32 40 48 56 64 72 80

Number of Threads

0

50

100

150

200

250

300

L
at

en
cy

[m
s]

(b) Impact on request latency as the load for Auc-
tionWhisk is increased

Figure 11: Experiment 1: Increasing the load for AuctionWhisk gradually in-
creases request latency as the percentage of requests handled at the edge de-
creases and more and more requests are offloaded to the cloud. At approximately
16 threads, the edge node is saturated and starts offloading; at approximately
56 threads, the intermediary node starts offloading to the cloud node.

27



25 50 75 100 125 150 175 200

Latency

0.0

0.2

0.4

0.6

0.8

1.0

C
u

m
u

la
ti

ve
D

is
tr

ib
u

ti
on

8

16

24

32

40

48

56

64

72

80

T
h

re
ad

s

Figure 12: Experiment 1: CDF of AuctionWhisk runs at different load levels.
The steep incline after “plateaus” indicates that any additional load is offloaded
towards the cloud.

40 60 80 100 120 140 160 180 200
Latency

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
ati

ve
 D

ist
rib

ut
io

n

Threads
32
64

Strategy
Cloud Only
Auctions

Figure 13: Experiment 1: CDF of AuctionWhisk and a cloud-only deployment
of OpenWhisk for two different load levels. AuctionWhisk is at least as fast as
OpenWhisk.

28



edge intermediary cloud
Node Type

60

80

100

120

140

St
or

ag
e B

id

(a) Clients pay the same bid on all node types. [cal-
culated]

edge intermediary cloud
Node Type

60

80

100

120

140

St
or

ag
e B

id

(b) Clients use a discounted bid in the cloud (80%)
and on intermediary nodes (90%). [measured]

Figure 14: Experiment 2: Distribution of successful bids on different node types.
Nodes with limited capacity at or near the edge only store the executables with
the highest bids while the cloud stores all executables.

29



be expected to use higher bids for the edge or the intermediary (to in-
crease the chance of their function executing there). For this experiment,
we implemented this as a discount: functions with a bid b will pay b to
edge nodes, 0.9 · b to intermediary nodes, and 0.8 · b to the cloud. We used
detailed logging so that we could also calculate the node earnings without
the discounted bids and repeated the experiment three times. Through
previous test runs, we had already asserted that requests are indeed of-
floaded when an executable is not found locally and therefore decided not
to run a workload against this deployment.

Figure 14 shows the results of one experiment run with (Figure 14b)
and without (Figure 14a) discounted bids. As expected, we can see that
functions stored at the edge have an average storage bid close to the
upper bound. This is due to the restricted storage space, which forces
the node to remove all functions with lower storage bids. In contrast to
this, the cloud node stores all functions, from high paying to low paying
– this can be clearly seen in Figure 14a where the upper whiskers for all
node types have the same value. In general, both figures demonstrate the
desired effect while the discounted bids (which could also be implemented
as a surcharge on the edge) further aggravate the effect. The exact same
effect can be seen in the other two test runs which, however, had slightly
different values due to the randomization of bids.

6.5 Experiment 3: Effect of Execution Prices

The setup of this experiment is very similar to Simulation Experiment
1 from Section 5: We analyze the effect of processing bids on function
placement and design the experiment in a way that asserts that the stor-
age bids do not affect the outcome. We deployed the same function 100
times, each with a random processing bid in the interval [50;150]. For
the workload, we used eight parallel thread groups (with eight threads
per thread group) which each targeted one randomly selected function,
i.e., we invoked eight different functions which each had their respective
processing bid. We repeated the experiment three times.

The results of one experiment run are shown in Figure 15: Similar to
experiment 2, we not only show the results of the base setup as described
above (Figure 15a) but also calculated the outcome for developer discounts
on intermediary nodes (90% of the edge price) and in the cloud (80%
of the edge price) – see Figure 15b. As expected, we can see that the
distribution of prices paid for execution strongly increases towards the
edge as the nodes with limited resources are able to cherry-pick the highest
paying requests only. With the discount option, this effect is even more
apparent. The other two experiment runs confirm these results but have
slightly different values due to the randomization when selecting the 8 out
of 100 target functions.

Overall, our experiments with AuctionWhisk show the desired effect of
an efficient resource allocation where the location of a function execution
is determined by the price the application developer is willing to pay.

30



edge intermediary cloud
Node Type

60

70

80

90

100

110

120

130

140

150
Ex

ec
ut

io
n 

Bi
d

(a) Clients pay the same bid on all node
types. [measured]

edge intermediary cloud
Node Type

60

70

80

90

100

110

120

130

140

150

Ex
ec

ut
io

n 
Bi

d

(b) Clients use a discounted bid in the cloud (80%)
and on intermediary nodes (90%). [calculated]

Figure 15: Experiment 3: Distribution of prices paid per execution across dif-
ferent node types. The higher the processing bid of the requested function is,
the more likely is the request to be executed at or near the edge.

31



7 Discussion

With our simulation models and empirical measurements on our prototype
AuctionWhisk, we have shown that it is feasible to place functions in fog-
based FaaS platforms using decentralized auction-inspired mechanisms.
In the following, we will discuss limitations of our approach and derive
avenues for future work.

Bidding of application developers. In our experiments, we assume
simple bidding strategies from application developers, yet more advanced
strategies, such as developers providing high bids for scarce resources that
are urgently needed while offering low bids for, e.g., processing and storage
in the cloud, are also possible.

Although this is not the focus of our research, our auction-inspired
approach also invites a game-theoretic perspective, e.g. on combining
ostorage and processing bids such as to use a high storage bid with a
bloated executable to effectively get a single tenant edge node combined
with a very low processing bid to reduce cost.

Furthermore, as bids are provided at deploy time, they are relatively
static. This means that developers cannot easily take advantage of periods
of low demand (e.g., at night) with temporarily lower bids and reduced
overall costs. Also, actual prices may vary a lot over time depending
on the actions of other developers as well as the request rates created
by end users. The result is that earnings at the edge are maximized,
with the goal of making the high CapEx of installing edge infrastructure
worthwhile, while tenants can specify how much they are willing to pay.

As an additional factor, the impact of providing information about
the location of function execution, system load, or bids of other tenants
on optimal bidding strategies may be an interesting subject for further
research.

Auction mechanism. In our simulation model, nodes are rather
simplistic in that they do not look into the future and do not couple
storage and processing bid – they simply accept all executables that fit
in and serve whatever is received in the order of the bids. While this
is in line with our chosen auction model, much higher revenue could be
achieved through decisions that follow pricing trends. For instance, just
considering the processing bid together with past invocation numbers and
coupled with the storage bid could result in considerably higher profits.
As a more concrete example, it may make sense to delegate a processing
request even though the node is not saturated when a periodic request
with a higher processing cost is expected to arrive shortly.

Likewise, our AuctionWhisk prototype considers both bids separately
through the heuristics described in Section 6.1. We decided not to use the
micro-batching approach for the execution auction in our experiments as
it increases the overall latency significantly. Nevertheless, micro-batching
would further increase the earnings for the respective node. For a deploy-
ment in practice, we suggest to use micro-batching when the latency to
the next node on the path to the cloud is high and our proposed heuristic
in all other cases.

Overall resource allocation. Combining both sides of the auction,
significant improvements are possible when application developers try to

32



minimize cost while nodes try to maximize earnings. However, even then
the overall solution will not yield the globally optimal result that could
be achieved through an allocation optimization across all nodes. Yet, in
exchange for optimizing only locally, nodes do not need to communicate
for their decision, leading to faster decisions and thus lower end-to-end la-
tency, more overall scalability, and potentially also an increased resiliency
against connection losses. In some scenarios, it may also be beneficial
not to offload a request but rather to queue it on the edge briefly (thus
possibly reducing end-to-end latency while keeping the earnings for the
edge node).

No guarantees for application developers. Overall, our solution
takes a rather particular approach in that application developers get no
guarantees where their function will be executed – the placement of func-
tions only depends on the bids at a specific point in time. There is, hence,
no way to provide bounds on response time and other quality dimensions,
i.e., the infrastructure provider does not provide any guarantees beyond
eventually executing every function somewhere. In a way, this is compara-
ble to airline seat assignment schemes in which economy class passengers
can bid for business class upgrades. While this is undesirable from an
application developer perspective, our proposed approach has the benefit
that it requires no centralized coordination at all, i.e., it scales well and is
resilient, and that it is likely to maximize earnings for the infrastructure
provider. Also, the lack of guarantees is in line with the state-of-practice
in cloud services which provide minimal to no guarantees as part of their
SLAs [22, 17].

Still, if our proposed approach were to be used in practice, we would
expect infrastructure providers to let customers reserve subsets of their
resources at a fixed price – comparable to 5G slicing [40] – and use the
proposed auctioning scheme only for a subset of their resources. This
would lead to the interesting situation that application developers that
actually need quality guarantees can pay for it (comparable to directly
booking a business class seat) while others can still bid on the remaining
resources (comparable to bidding on a business class upgrade).

Finally, developers can currently not get a guarantee that function
execution happens only in a certain area to, e.g., satisfy regulatory or
privacy requirements. While they could decide to send their executable
to only a limited subset of nodes, requests that are outbid on the edge will
still be propagated to the cloud before the cloud node detects that it does
not have an executable for the request. With personal data of end users
governed by the GDPR, this might be illegal depending on the location
of the cloud node. One way to address this would be to let developers
not only specify bids but also constraint individual offloading paths of
functions. This way, a request could be offloaded only to desired nodes
(possibly nearby edge nodes).

Implementation challenges. There are of course a number of tech-
nical challenges in implementing a fully integrated platform that we did
neither address with our concept nor our prototype implementation. For
instance, we did not consider node failures or network partitioning: The
former case could be addressed by using a reliable messaging middleware
for communication between nodes, which would ensure that all requests

33



are eventually delivered to a node for execution. In the case of network
partitioning, offloaded requests will be lost in our current prototype. We
do, however, not see this as a major limitation as, in such a scenario, some
requests will have to be dropped.

There is also the aspect of co-managing data placement [56, 55, 131, 31]
and function placement [103, 58, 13, 105], which we think is a promising
avenue for future research [61, 117].

Finally, we did not consider undeployment of functions: Depending on
storage demand, this may remove the executable from an otherwise fully
utilized node. The node, however, then no longer knows of rejected or
evicted executables, thus potentially reducing future earnings in this node.
This problem could be addressed by having a repository where developers
submit their executables and bids as a single source of truth that nodes
could then query to gain access to executables even after evictions.

Summary. While there are some limitations in our approach, we
believe its benefits outweigh the disadvantages. Most of the limitations
could also be addressed through compensation mechanisms or small ex-
tensions. Furthermore, the overall AuctionWhisk approach opens up a
range of interesting game-theoretic research questions, which are beyond
the scope of this paper but worthy of further research.

8 Related Work

The service placement problem is inherent to fog computing, and deploy-
ing distributed applications over a distributed, heterogeneous infrastruc-
ture under constraints such as bandwidth usage, latency limits, or regu-
latory requirements is a combinatorial problem. Consequently, this chal-
lenge has been a key research topic in the last few years. On the one hand,
there are static solutions using upfront best practices [103, 51, 70, 112],
simulation [59, 58, 50, 66, 23, 116, 130, 107, 39, 115, 46], testbed evalua-
tion [54, 84, 32, 37, 84, 32, 11, 35, 8, 78], a combination of those [105, 110],
or formalized assignment problems [34, 24, 25, 92, 47, 6, 60, 71, 127, 135,
64]. On the other hand, dynamic approaches using centralized sched-
ulers [15, 122, 81, 36, 7, 91, 87, 136, 98, 88, 126, 68] or decentralized
algorithms [75, 41, 113, 16] have also been proposed. It is no surprise
that auction-based approaches, which have seen broader interest in com-
puter science [63, 43, 134, 128, 69, 132, 26, 65], have also been proposed
for fog computing, especially in those multi-provider, multi-tenant scenar-
ios where both infrastructure providers and application service providers
want to find a cost-optimal solution to service placement [38, 83, 137, 74,
42, 94, 114, 1, 27, 48, 76, 52, 118, 73, 72, 120, 133, 129, 111, 100, 138,
12, 67, 79, 49, 45]. For example, Fawcett et al. [38] present an auction-
based resource allocation platform for the fog that has service providers
interested in using the fog infrastructure bid for resources provided by in-
dependent infrastructure providers. They employ combinatorial bids for
combinations of CPU, storage, and memory for a specified time slot and
assume services to be available in the form of containers. A central orches-
trator acts as an auctioneer towards service providers and collects their

34



bids, then performs a provisioning step where it provisions the services of
the winning bids on the available devices.

Nevertheless, existing research has not taken into account the unique
challenges and opportunities of fog-based FaaS platforms, although it
has been shown that the FaaS paradigm is a good fit for fog applica-
tions [103, 104, 123, 20]. Notably, the finely-grained execution units of
serverless functions can lead to high load on central scheduling compo-
nents, as Rausch et al. [108] have shown in comparison to their earlier
work [90, 89, 109]. The authors claim that there is no technical solution
that is able to handle such scheduling of function execution across edge,
intermediaries, and the cloud. On the other hand, precisely this flexible
scheduling of function executions can maximize resource allocation and
lead to better auction conditions for both providers as well as consumers.
Using long-running services that are migrated with user movement (e.g.,
as suggested by [82, 124]) blocks scarce resources on constrained and ex-
pensive edge and fog nodes and is thus less efficient than executing func-
tions only when needed.

Nevertheless, some scheduling solutions using centralized monitoring
or control units have been proposed: For example, Aske and Zhao [4]
propose a central monitoring solution that collects telemetry data from
different fog FaaS platforms and schedules functions to the best plat-
form given per-function constraints. However, this leaves the majority of
scheduling work with the platform providers as it abstracts from the ac-
tual platforms. Cheng et al. [28] introduce function coordination based on
“data,” “usage,” and “system” contexts to optimize data-intensive appli-
cations. To some extent, this assumes scalable infrastructure as resources
need to be available where data is produced, and a central coordinator
needs to keep track of all data streams. Furthermore, as this approach
is tailored to data-intensive applications, it can probably not deal with
event-driven applications. Pelle et al. [99] as well as Palade et al. [96]
use centralized controllers for function scheduling, albeit not on a per-
execution basis. Nevertheless, this requires a central, global view of the
FaaS system, which is especially unfeasible in a multi-provider fog setup.

Decentralized approaches forego such a central component to increase
scalability and availability. Persson and Angelsmark [102] build their
Kappa platform on top of Calvin [101], as distributed IoT platform. They
deploy functions as applications on top of Calvin, yet it is unclear how
function scheduling is achieved beyond static assignment of functions to
compute nodes. Baresi and Medonca [13] propose a serverless edge plat-
form that comprises independent FaaS platforms distributed across the
fog. The platforms coordinate function offloading among each other if
needed, based on current load and request QoS requirements. Although
their approach avoids a centralized scheduler that could introduce a bot-
tleneck or single point of failure, it is unclear on what basis function
offloading is decided. Regional load balancers distribute requests within
their region, yet the paper remains vague regarding the question whether
multiple such load balancers exist or what their impact is on request la-
tency, as additional network hops introduce overhead. In their earlier
work [14], clients themselves would need to specify whether to execute a
function at a local edge node or in the cloud. This is also a common ap-

35



proach in commercial solutions for edge function execution. Most notably,
AWS offers Greengrass14 and Lambda@Edge15, while Microsoft has added
Azure Stack Edge16 to their portfolio. These solutions require application
developers to address function execution environments at the edge or in
the cloud in different ways, so that the burden of resource management
is left to developers. To this end, Das et al. [33] propose client-side mod-
els that predict whether an execution on the edge or in the cloud is more
efficient to satisfy given constraints. Cicconetti et al. [30] argue for uncoor-
dinated access, where clients are given a list of possible function execution
locations and make local decisions, for example through probing different
options and adapting over time. While this does not lead to a global
optimum, the scheduling load on clients and infrastructure is low. Two
assumptions make this a worse deal for infrastructure providers than our
auction-based approach: first, all possible function nodes must store the
function code at all times as they do not know when a client changes their
decision on execution location. Second, an edge node cannot influence
when it would like to be considered as an execution location for a func-
tion, for instance once it has enough resources available. This prohibits a
dynamic pricing policy. The authors have also proposed using intermedi-
ary routers [29] as decentralized function schedulers, an approach where
both clients and nodes have no control over function execution.

9 Conclusion

Serverless FaaS is a promising paradigm for fog environments. In prac-
tice, fog-based FaaS platforms have to schedule the execution of func-
tions across multiple geo-distributed sites, especially when edge nodes are
overloaded. Existing approaches mostly argue for centralized placement
decisions which, however, will not scale indefinitely [108].

In this paper, we extend a previous paper [19] and follow an auction-
inspired scheme in which application developers specify bids for storing
executables and executing functions across the fog. This way, overloaded
fog nodes can make local decisions about function execution. Therefore,
also the function placement is distributed across nodes and no longer the
scalability bottleneck it is with centralized scheduling approaches. Fur-
thermore, we showed through simulation that our approach asserts that
all requests are served while maximizing revenue for overloaded nodes.
We also showed that such an approach can be implemented in real-world
FaaS platforms by extending the open source system Apache OpenWhisk
for our AuctionWhisk prototype and conducting three experiments with
it.

14aws.amazon.com/greengrass
15aws.amazon.com/lambda/edge
16azure.microsoft.com/en-us/products/azure-stack/edge

36



Acknowledgments

We thank Setareh Maghsudi for contributing an overview of various auc-
tion approaches to our original paper [19].

References

[1] Yassine Abdulsalam and M. Shamim Hossain. Covid-19 networking
demand: An auction-based mechanism for automated selection of
edge computing services. IEEE Transactions on Network Science
and Engineering, 2020.

[2] Alexandru Agache, Marc Brooker, Alexandra Iordache, Anthony
Liguori, Rolf Neugebauer, Phil Piwonka, and Diana-Maria Popa.
Firecracker: Lightweight virtualization for serverless applications.
pages 419–434, Santa Clara, CA, USA, 2020. 17th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI
20).

[3] Istemi Ekin Akkus, Ruichuan Chen, Ivica Rimac, Manuel Stein,
Klaus Satzke, Andre Beck, Paarijaat Aditya, and Volker Hilt.
SAND: Towards high-performance serverless computing. Boston,
MA, USA, July 2018. 2018 USENIX Annual Technical Conference
(USENIX ATC 18).

[4] Austin Aske and Xinghui Zhao. Supporting multi-provider server-
less computing on the edge. pages 1–6, Eugene, OR, USA, August
2018. Proceedings of the 47th International Conference on Parallel
Processing Companion.

[5] Mohammad S Aslanpour, Adel N Toosi, Claudio Cicconetti, Bah-
man Javadi, Peter Sbarski, Davide Taibi, Marcos Assuncao, Sukh-
pal Singh Gill, Raj Gaire, and Schahram Dustdar. Serverless edge
computing: vision and challenges. pages 1–10, Dunedin, New
Zealand, February 2021. 2021 Australasian Computer Science Week
Multiconference.

[6] Hossein Badri, Tayebeh Bahreini, Daniel Grosu, and Kai Yang.
Energy-aware application placement in mobile edge computing: A
stochastic optimization approach. IEEE Transactions on Parallel
and Distributed Systems, 31(4):909–922, 2020.

[7] Miloud Bagaa, Tarik Taleb, Jorge Bernal Bernabe, and Antonio
Skarmeta. Qos and resource-aware security orchestration and life
cycle management. IEEE Transactions on Mobile Computing, 2020.

[8] D Balasubramanian, A Dubey, W R Otte, W Emfinger, P S Kumar,
and G Karsai. A rapid testing framework for a mobile cloud. pages
128–134, New Delhi, India, October 2014. Proceedings of the 2014
25nd IEEE International Symposium on Rapid System Prototyping.

[9] Ioana Baldini, Paul Castro, Kerry Chang, Perry Cheng, Stephen
Fink, Vatche Ishakian, Nick Mitchell, Vinod Muthusamy, Rodric
Rabbah, Aleksander Slominski, and Philippe Suter. Serverless com-
puting: Current trends and open problems. In Research Advances
in Cloud Computing. Springer Singapore, 2017.

37



[10] Ioana Baldini, Perry Cheng, Stephen J. Fink, Nick Mitchell, Vinod
Muthusamy, Rodric Rabbah, Philippe Suter, and Olivier Tardieu.
The serverless trilemma: Function composition for serverless com-
puting. pages 89–103, Vancouver, BC, Canada, October 2017. Pro-
ceedings of the 2017 ACM SIGPLAN International Symposium on
New Ideas, New Paradigms, and Reflections on Programming and
Software.

[11] T Banzai, H Koizumi, R Kanbayashi, T Imada, T Hanawa, and
M Sato. D-Cloud: Des. of a softw. testing environ. for reliable
distributed syst. using cloud computing technology. pages 631–636,
Melbourne, VIC, Australia, May 2010. Proceedings of the 2010 10th
IEEE/ACM International Conference on Cluster, Cloud and Grid
Computing.

[12] Gaurav Baranwal and Dinesh Kumar. Dafna: Decentralized auc-
tion based fog node allocation in 5g era. pages 575–580, Rupnagar,
India, November 2020. 2020 IEEE 15th International Conference on
Industrial and Information Systems (ICIIS).

[13] Luciano Baresi and Danilo Filgueira Mendonça. Towards a server-
less platform for edge computing. pages 1–10, Prague, Czech Re-
public, June 2019. Proceedings of the 2019 IEEE International Con-
ference on Fog Computing (ICFC).

[14] Luciano Baresi, Danilo Filgueira Mendonça, and Martin Garriga.
Empowering low-latency applications through a serverless edge com-
puting architecture. pages 196–210, Oslo, Norway, September 2017.
European Conference on Service-Oriented and Cloud Computing.

[15] Fani Basic, Atakan Aral, and Ivona Brandic. Fuzzy handoff con-
trol in edge offloading. pages 87–96, Prague, Czech Republic, June
2019. Proceedings of the 2019 IEEE International Conference on
Fog Computing (ICFC).

[16] Soeren Becker, Florian Schmidt, Lauritz Thamsen, Ana Juan Ferrer,
and Odej Kao. Los: Local-optimistic scheduling of periodic model
training for anomaly detection on sensor data streams in meshed
edge networks. Washington DC, USA, 2021. 2021 IEEE Interna-
tional Conference on Autonomic Computing and Self-Organizing
Systems (ACSOS).

[17] D. Bermbach, E. Wittern, and S. Tai. Cloud Service Benchmark-
ing: Measuring Quality of Cloud Services from a Client Perspective.
Springer, 2017.

[18] David Bermbach, Ahmet-Serdar Karakaya, and Simon Buchholz.
Using Application Knowledge to Reduce Cold Starts in FaaS Ser-
vices. pages 134–143, Brno, Czech Republic, March 2020. Proceed-
ings of the 35th ACM Symposium on Applied Computing (SAC
2020).

[19] David Bermbach, Setareh Maghsudi, Jonathan Hasenburg, and To-
bias Pfandzelter. Towards auction-based function placement in
serverless fog platforms. pages 25–31, Sydney, NSW, Australia,
April 2020. Proceedings of the Second IEEE International Confer-
ence on Fog Computing (ICFC 2020).

38



[20] David Bermbach, Frank Pallas, David Garcia Perez, Pierluigi Ple-
bani, Maya Anderson, Ronen Kat, and Stefan Tai. A research per-
spective on fog computing. pages 198–210, Málaga, Spain, Novem-
ber 2017. International Conference on Service-Oriented Computing.

[21] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli.
Fog computing and its role in the internet of things. pages 13–16,
Helsinki, Finland, August 2012. Proceedings of the first edition of
the MCC workshop on Mobile cloud computing.

[22] Simon Bradshaw, Christopher Millard, and Ian Walden. Contracts
for clouds: Comparison and analysis of the terms and conditions of
cloud computing services. International Journal of Law and Infor-
mation Technology, 19(3):187–223, 2011.

[23] Giacomo Brambilla, Marco Picone, Simone Cirani, Michele
Amoretti, and Francesco Zanichelli. A simulation platform for large-
scale internet of things scenarios in urban environments. pages 50–
55, Rome, Italy, October 2014. Proceedings of the First Interna-
tional Conference on IoT in Urban Space.

[24] A Brogi and S Forti. QoS-Aware deployment of IoT applications
through the fog. IEEE Internet Things Journal, 4(5):1185–1192,
2017.

[25] Valeria Cardellini, Vincenzo Grassi, Francesco Lo Presti, and Mat-
teo Nardelli. Optimal operator replication and placement for dis-
tributed stream processing systems. ACM SIGMETRICS Perfor-
mance Evaluation Review, 44(4):11–22, 2017.

[26] T. S. Chandrashekar, Y. Narahari, C. H. Rosa, D. M. Kulkarni,
J. D. Tew, and P. Dayama. Auction-based mechanisms for elec-
tronic procurement. IEEE Transactions on Automation Science and
Engineering, 4(3):297–321, 2007.

[27] Long Chen, Jigang Wu, Xinxiang Zhang, and Gangqiang Zhou.
Tarco: Two-stage auction for d2d relay aided computation resource
allocation in hetnet. IEEE Transactions on Services Computing,
14(1):286–299, 2021.

[28] Bin Cheng, Jonathan Fuerst, Gurkan Solmaz, and Takuya Sanada.
Fog function: Serverless fog computing for data intensive iot ser-
vices. pages 28–35, Melbourne, VIC, Australia, May 2019. 2019
IEEE International Conference on Services Computing (SCC).

[29] Claudio Cicconetti, Marco Conti, and Andrea Passarella. A decen-
tralized framework for serverless edge computing in the internet of
things. IEEE Transactions on Network and Service Management,
18(2):2166–2180, 2020.

[30] Claudio Cicconetti, Marco Conti, and Andrea Passarella. Unco-
ordinated access to serverless computing in mec systems for iot.
Computer Networks, 172:107184, 2020.

[31] Bastien Confais, Adrien Lebre, and Benoit Parrein. An object store
service for a fog/edge computing infrastructure based on IPFS and a
scale-out NAS. pages 41–50, Madrid, Spain, May 2017. Proceedings

39



of the 2017 IEEE 1st International Conference on Fog and Edge
Computing (ICFEC).

[32] A Coutinho, F Greve, C Prazeres, and J Cardoso. Fogbed: A rapid-
prototyping emulation environment for fog computing. pages 1–7,
Kansas City, MO, USA, May 2018. Proceedings of the 2018 IEEE
International Conference on Communications (ICC).

[33] Anirban Das, Shigeru Imai, Stacy Patterson, and Mike P Wittie.
Performance optimization for edge-cloud serverless platforms via
dynamic task placement. pages 41–50, Melbourne, VIC, Australia,
2020. 2020 20th IEEE/ACM International Symposium on Cluster,
Cloud and Internet Computing (CCGRID).

[34] Vincenzo De Maio and Ivona Brandic. Multi-objective mobile edge
provisioning in small cell clouds. pages 127–138, Mumbai, India,
April 2019. Proceedings of the 2019 ACM/SPEC International Con-
ference on Performance Engineering.

[35] R L S de Oliveira, C M Schweitzer, A A Shinoda, and L Ro-
drigues Prete. Using mininet for emulation and prototyping
software-defined networks. pages 1–6, Bogota, Colombia, June 2014.
Proceedings of the 2014 IEEE Colombian Conference on Communi-
cations and Computing (COLCOM).

[36] Shuiguang Deng, Zhengzhe Xiang, Javid Taheriand, Mohammad Ali
Khoshkholghi, Jianwei Yin, Albert Y. Zomaya, and Schahram
Dustdar. Optimal application deployment in resource constrained
distributed edges. IEEE Transactions on Mobile Computing,
20(5):1907–1923, 2021.

[37] S Eisele, G Pettet, A Dubey, and G Karsai. Towards an architecture
for evaluating and analyzing decentralized fog applications. pages
1–6, Santa Clara, CA, USA, October 2017. Proceedings of the 2017
IEEE Fog World Congress (FWC).

[38] Lyndon Fawcett, Matthew Broadbent, and Nicholas Race. Combi-
natorial auction-based resource allocation in the fog. pages 62–67,
Den Haag, Netherlands, October 2016. 2016 Fifth European Work-
shop on Software-Defined Networks (EWSDN).

[39] Damián Fernández-Cerero, Alejandro Fernández-Montes,
F Javier Ortega, Agnieszka Jakóbik, and Adrian Widlak. Sphere:
Simulator of edge infrastructures for the optimization of perfor-
mance and resource energy consumption. Simulation Modelling
Pract. and Theory, 101(1019663), 2020.

[40] Xenofon Foukas, Georgios Patounas, Ahmed Elmokashfi, and Ma-
hesh K Marina. Network slicing in 5g: Survey and challenges. IEEE
Communications Magazine, 55(5):94–100, 2017.

[41] Bin Gao, Zhi Zhou, Fangming Liu, Fei Xu, and Bo Li. An on-
line framework for joint network selection and service placement in
mobile edge computing. IEEE Transactions on Mobile Computing,
2021.

40



[42] Guoju Gao, Mingjun Xiao, Jie Wu, He Huang, Shengqi Wang, and
Guoliang Chen. Auction-based vm allocation for deadline-sensitive
tasks in distributed edge cloud. IEEE Transactions on Services
Computing, 2019.

[43] L. Gao, Y. Xu, and X. Wang. MAP: Multiauctioneer progressive
auction for dynamic spectrum access. IEEE Transactions on Mobile
Computing, 10(8):1144–1161, 2011.

[44] Gareth George, Fatih Bakir, Rich Wolski, and Chandra Krintz.
Nanolambda: Implementing functions as a service at all resource
scales for the internet of things. pages 220–231, San Jose, CA, USA,
November 2020. Proceedings of the 2020 IEEE/ACM Symposium
on Edge Computing (SEC).

[45] Ammar Gharaibeh, Abdallah Khreishah, Mehdi Mohammadi, Ala
Al-Fuqaha, Issa Khalil, and Ammar Rayes. Online auction of cloud
resources in support of the internet of things. IEEE Internet of
Things Journal, 4(5):1583–1596, 2017.

[46] N K Giang, M Blackstock, R Lea, and V C M Leung. Developing
IoT applications in the fog: A distributed dataflow approach. pages
155–162, Seoul, South Korea, October 2015. Proceedings of the 2015
5th International Conference on the Internet of Things (IOT).

[47] Mohammad Goudarzi, Huaming Wu, Marimuthu Palaniswami, and
Rajkumar Buyya. An application placement technique for concur-
rent iot applications in edge and fog computing environments. IEEE
Transactions on Mobile Computing, 20(4):1298–1311, 2021.

[48] Shaoyong Guo, Yao Dai, Song Guo, Xuesong Qiu, and Feng Qi.
Blockchain meets edge computing: Stackelberg game and double
auction based task offloading for mobile blockchain. IEEE Trans-
actions on Vehicular Technology, 69(5):5549–5561, 2020.

[49] Yinzhe Guo, Takumi Saito, Ryuji Oma, Shigenari Nakamura, To-
moya Enokido, and Makoto Takizawa. Distributed approach to fog
computing with auction method. pages 268–275, Caserta, Italy,
March 2020. Proceedings of the 34th International Conference on
Advanced Information Networking and Applications (AINA-2020).

[50] Harshit Gupta, Amir Vahid Dastjerdi, Soumya K Ghosh, and Ra-
jkumar Buyya. iFogSim: A toolkit for modelling and simulation
of resource management technologies in the internet of things, edge
and fog computing environments. Software: Practice and Experi-
ence, 47(9):1275–1296, 2017.

[51] M Gusev, B Koteska, M Kostoska, B Jakimovski, S Dustdar, O Sce-
kic, T Rausch, S Nastic, S Ristov, and T Fahringer. A deviceless
edge computing approach for streaming IoT applications. IEEE
Internet Computing, 23(1):37–45, 2019.

[52] Ummy Habiba and Ekram Hossain. Auction mechanisms for virtual-
ization in 5g cellular networks: Basics, trends, and open challenges.
IEEE Communications Surveys Tutorials, 20(3):2264–2293, 2018.

41



[53] Adam Hall and Umakishore Ramachandran. An execution model for
serverless functions at the edge. pages 225–236, Montreal, Canada,
April 2019. Proceedings of the International Conference on Internet
of Things Design and Implementation.

[54] J Hasenburg, M Grambow, E Grünewald, S Huk, and D Bermbach.
MockFog: Emulating fog computing infrastructure in the cloud.
pages 144–152, Prague, Czech Republic, June 2019. Proceedings of
the 2019 IEEE International Conference on Fog Computing (ICFC).

[55] Jonathan Hasenburg, Martin Grambow, and David Bermbach.
FBase: A Replication Service for Data-Intensive Fog Applications.
Technical report, 2019.

[56] Jonathan Hasenburg, Martin Grambow, and David Bermbach. To-
wards a replication service for data-intensive fog applications. pages
267–270, Brno, Czech Republic, March 2020. Proceedings of the
35th ACM Symposium on Applied Computing, Posters Track (SAC
2020).

[57] Jonathan Hasenburg, Martin Grambow, and David Bermbach.
Mockfog 2.0: Automated execution of fog application experiments
in the cloud. IEEE Transactions on Cloud Computing (TCC), 2021.

[58] Jonathan Hasenburg, Sebastian Werner, and David Bermbach. Fo-
gexplorer. pages 1–2, Rennes, France, December 2018. Proceedings
of the 19th International Middleware Conference (Posters).

[59] Jonathan Hasenburg, Sebastian Werner, and David Bermbach. Sup-
porting the evaluation of fog-based IoT applications during the de-
sign phase. pages 1–6, Rennes, France, December 2018. Proceedings
of the 5th Workshop on Middleware and Applications for the Inter-
net of Things.

[60] Zhenli He, Kenli Li, Keqin Li, and Wei Zhou. Server configura-
tion optimization in mobile edge computing: A cost-performance
tradeoff perspective. Software: Practice and Experience, 2021.

[61] Joseph M Hellerstein, Jose Faleiro, Joseph E Gonzalez, Johann
Schleier-Smith, Vikram Sreekanti, Alexey Tumanov, and Cheng-
gang Wu. Serverless computing: One step forward, two steps back.
Asilomar, CA, USA, January 2019. Proceedings of CIDR’ 19.

[62] Scott Hendrickson, Stephen Sturdevant, Tyler Harter, Venkatesh-
waran Venkataramani, Andrea C. Arpaci-Dusseau, and Remzi H.
Arpaci-Dusseau. Serverless computation with openlambda. Den-
ver, CO, USA, June 2016. 8th USENIX Workshop on Hot Topics in
Cloud Computing (HotCloud 16).

[63] J. Huang, Z. Han, M. Chiang, and H. V. Poor. Auction-based
resource allocation for cooperative communications. IEEE Journal
on Selected Areas in Communications, 26(7):1226–1237, 2008.

[64] Gerrit Janßen, Ilya Verbitskiy, Thomas Renner, and Lauritz Tham-
sen. Scheduling stream processing tasks on geo-distributed hetero-
geneous resources. pages 5159–5164, Seattle, WA, USA, 2018. 2018
IEEE International Conference on Big Data (Big Data).

42



[65] S. K. Jayaweera, M. Bkassiny, and K. A. Avery. Asymmetric co-
operative communications based spectrum leasing via auctions in
cognitive radio networks. IEEE Transactions on Wireless Commu-
nications, 10(8):2716–2724, 2011.

[66] Devki Nandan Jha, Khaled Alwasel, Areeb Alshoshan, Xianghua
Huang, Ranesh Kumar Naha, Sudheer Kumar Battula, Saurabh
Garg, Deepak Puthal, Philip James, Albert Zomaya, Schahram
Dustdar, and Rajiv Ranjan. Iotsim-edge: A simulation framework
for modeling the behavior of internet of things and edge computing
environments. Software: Practice and Experience, 50(6):844–867,
2020.

[67] Yutao Jiao, Ping Wang, Dusit Niyato, and Kongrath Suankaewma-
nee. Auction mechanisms in cloud/fog computing resource alloca-
tion for public blockchain networks. IEEE Transactions on Parallel
and Distributed Systems, 30(9):1975–1989, 2019.

[68] Anshul Jindal, Michael Gerndt, Mohak Chadha, Vladimir Podol-
skiy, and Pengfei Chen. Function delivery network: Extending
serverless computing for heterogeneous platforms. Software: Prac-
tice and Experience, 2021.

[69] B. Kantarci and H. T. Mouftah. Trustworthy sensing for public
safety in cloud-centric internet of things. IEEE Internet of Things
Journal, 1(4):360–368, 2014.

[70] V Karagiannis and S Schulte. Comparison of alternative architec-
tures in fog computing. pages 19–28, Melbourne, VIC, Australia,
May 2020. Proceedings of the 2020 IEEE 4th International Confer-
ence on Fog and Edge Computing (ICFEC).

[71] Shweta Khare, Hongyang Sun, Julien Gascon-Samson, Kaiwen
Zhang, Aniruddha Gokhale, Yogesh Barve, Anirban Bhattacharjee,
and Xenofon Koutsoukos. Linearize, predict and place: minimiz-
ing the makespan for edge-based stream process. of directed acyclic
graphs. pages 1–14, Arlington, VA, USA, November 2019. Proceed-
ings of the 4th ACM/IEEE Symposium on Edge Computing.

[72] Abbas Kiani and Nirwan Ansari. Toward hierarchical mobile edge
computing: An auction-based profit maximization approach. IEEE
Internet of Things Journal, 4(6):2082–2091, 2017.

[73] Yunseong Lee, Seohyeon Jeong, Arooj Masood, Laihyuk Park, Nhu-
Ngoc Dao, and Sungrae Cho. Trustful resource management for
service allocation in fog-enabled intelligent transportation systems.
IEEE Access, 8:147313–147322, 2020.

[74] Quanyi Li, Haipeng Yao, Tianle Mai, Chunxiao Jiang, and Yan
Zhang. Reinforcement-learning- and belief-learning-based double
auction mechanism for edge computing resource allocation. IEEE
Internet of Things Journal, 7(7):5976–5985, 2020.

[75] Yuqing Li, Wenkuan Dai, Xiaoying Gan, Haiming Jin, Luoyi Fu,
Huadong Ma, and Xinbing Wang. Cooperative service placement
and scheduling in edge clouds: A deadline-driven approach. IEEE
Transactions on Mobile Computing, 2021.

43



[76] Minghui Liwang, Shijie Dai, Zhibin Gao, Yuliang Tang, and Huaiyu
Dai. A truthful reverse-auction mechanism for computation offload-
ing in cloud-enabled vehicular network. IEEE Internet of Things
Journal, 6(3):4214–4227, 2019.

[77] Rongxing Lu, Kevin Heung, Arash Habibi Lashkari, and Ali A
Ghorbani. A lightweight privacy-preserving data aggregation
scheme for fog computing-enhanced iot. IEEE Access, 5:3302–3312,
2017.

[78] Andre Luckow, Kartik Rattan, and Shantenu Jha. Exploring task
placement for edge-to-cloud applications using emulation. pages
79–83, Online, Australia, May 2021. 2021 IEEE 5th International
Conference on Fog and Edge Computing (ICFEC).

[79] Nguyen Cong Luong, Yutao Jiao, Ping Wang, Dusit Niyato, Dong In
Kim, and Zhu Han. A machine-learning-based auction for re-
source trading in fog computing. IEEE Communications Magazine,
58(3):82–88, 2020.

[80] T Lynn, P Rosati, A Lejeune, and V Emeakaroha. A prelimi-
nary review of enterprise serverless cloud computing (Function-as-
a-Service) platforms. pages 162–169, Hong Kong SAR, December
2017. 2017 IEEE International Conference on Cloud Computing
Technology and Science (CloudCom).

[81] Yu Ma, Weifa Liang, Jing Li, Xiaohua Jia, and Song Guo. Mobility-
aware and delay-sensitive service provisioning in mobile edge-cloud
networks. IEEE Transactions on Mobile Computing, 2020.

[82] Andrew Machen, Shiqiang Wang, Kin K Leung, Bong Jun Ko, and
Theodoros Salonidis. Live service migration in mobile edge clouds.
IEEE Wireless Communications, 25(1):140–147, 2017.

[83] Redowan Mahmud, Satish Narayana Srirama, Kotagiri Ramamoha-
narao, and Rajkumar Buyya. Profit-aware application placement for
integrated fog–cloud computing environments. Journal of Parallel
and Distributed Computing, 135:177–190, 2020.

[84] R Mayer, L Graser, H Gupta, E Saurez, and U Ramachandran.
EmuFog: Extensible and scalable emulation of large-scale fog com-
puting infrastructures. pages 1–6, Santa Clara, CA, USA, October
2017. Proceedings of the 2017 IEEE Fog World Congress (FWC).

[85] Peter Mell and Timothy Grance. The NIST definition of cloud
computing. NIST Special Publication 800-145, 2011.

[86] Anup Mohan, Harshad Sane, Kshitij Doshi, Saikrishna Edupuganti,
Naren Nayak, and Vadim Sukhomlinov. Agile cold starts for scalable
serverless. Renton, WA, USA, July 2019. 11th USENIX Workshop
on Hot Topics in Cloud Computing (HotCloud 19).

[87] Abdallah Moubayed, Abdallah Shami, Parisa Heidari, Adel Larabi,
and Richard Brunner. Edge-enabled v2x service placement for intel-
ligent transportation systems. IEEE Transactions on Mobile Com-
puting, 20(4):1380–1392, 2021.

44



[88] Mohammed Islam Naas, Philippe Raipin Parvedy, Jalil Boukhobza,
and Laurent Lemarchand. iFogStor: An IoT data placement strat-
egy for fog infrastructure. pages 97–104, Madrid, Spain, May 2017.
Proceedings of the 2017 IEEE 1st International Conference on Fog
and Edge Computing (ICFEC).

[89] Stefan Nastic and Schahram Dustdar. Towards deviceless edge
computing: Challenges, design aspects, and models for serverless
paradigm at the edge. In The Essence of Software Engineering.
Springer, Cham, 2018.

[90] Stefan Nastic, Thomas Rausch, Ognjen Scekic, Schahram Dustdar,
Marjan Gusev, Bojana Koteska, Magdalena Kostoska, Boro Jaki-
movski, Sasko Ristov, and Radu Prodan. A serverless real-time data
analytics platform for edge computing. IEEE Internet Computing,
21(4):64–71, 2017.

[91] Balazs Nemeth, Nuria Molner, Jorge Martinperez, Carlos J. Bernar-
dos, Antonio De la Oliva, and Balazs Sonkoly. Delay and reliability-
constrained vnf placement on mobile and volatile 5g infrastructure.
IEEE Transactions on Mobile Computing, 2021.

[92] K Oh, A Chandra, and J Weissman. A network cost-aware geo-
distributed data analytics system. pages 649–658, Melbourne, Aus-
tralia, May 2020. 2020 20th IEEE/ACM International Symposium
on Cluster, Cloud and Internet Computing (CCGRID).

[93] Melissa E O’Neill. The genuine sieve of eratosthenes. Journal of
Functional Programming, 19(1):95–106, 2009.

[94] Xue Ouyang, David Irwin, and Prashant Shenoy. Spotlight: An
information service for the cloud. pages 425–436, Nara, Japan,
June 2016. 2016 IEEE 36th International Conference on Distributed
Computing Systems (ICDCS).

[95] Andrei Palade, Aqeel Kazmi, and Siobhán Clarke. An evaluation of
open source serverless computing frameworks support at the edge.
pages 206–211, Milan, Italy, July 2019. 2019 IEEE World Congress
on Services (SERVICES).

[96] Andrei Palade, Atri Mukhopadhyay, Aqeel Kazmi, Christian Cabr-
era, Evelyn Nomayo, Georgios Iosifidis, Marco Ruffini, and Siobhán
Clarke. A swarm-based approach for function placement in feder-
ated edges. pages 48–50, Beijing, China, November 2020. 2020 IEEE
International Conference on Services Computing (SCC).

[97] Frank Pallas, Philip Raschke, and David Bermbach. Fog computing
as privacy enabler. IEEE Internet Computing, 24(4):15–21, 2020.

[98] John Paul Martin, A. Kandasamy, and K. Chandrasekaran. Crew:
Cost and reliability aware eagle-whale optimiser for service place-
ment in fog. Software: Practice and Experience, 2021.

[99] István Pelle, Francesco Paolucci, Balázs Sonkoly, and Filippo Cug-
ini. Telemetry-driven optical 5g serverless architecture for latency-
sensitive edge computing. pages 1–3, San Diego, CA, USA, March
2020. 2020 Optical Fiber Communications Conference and Exhibi-
tion (OFC).

45



[100] Xiting Peng, Kaoru Ota, and Mianxiong Dong. Multiattribute-
based double auction toward resource allocation in vehicular fog
computing. IEEE Internet of Things Journal, 7(4):3094–3103, 2020.

[101] Per Persson and Ola Angelsmark. Calvin–merging cloud and iot.
Procedia Computer Science, 52:210–217, 2015.

[102] Per Persson and Ola Angelsmark. Kappa: serverless iot deployment.
pages 16–21, Las Vegas, NV, USA, December 2017. Proceedings of
the 2nd International Workshop on Serverless Computing.

[103] Tobias Pfandzelter and David Bermbach. IoT data processing in
the fog: Functions, streams, or batch processing? pages 201–206,
Prague, Czech Republic, June 2019. 2019 IEEE International con-
ference on fog computing (ICFC).

[104] Tobias Pfandzelter and David Bermbach. tinyFaaS: A lightweight
faas platform for edge environments. pages 17–24, Sydney, NSW,
Australia, April 2020. Proceedings of the Second IEEE International
Conference on Fog Computing (ICFC 2020).

[105] Tobias Pfandzelter, Jonathan Hasenburg, and David Bermbach.
From zero to fog: Efficient engineering of fog-based iot applications.
Software: Practice and Experience, 51(8):1798–1821, 2021.

[106] Tobias Pfandzelter, Jonathan Hasenburg, and David Bermbach. To-
wards a Computing Platform for the LEO Edge. pages 43–48, On-
line, United Kingdom, April 2021. Proceedings of the 4th Interna-
tional Workshop on Edge Systems, Analytics and Networking.

[107] T Qayyum, A W Malik, M A Khan Khattak, O Khalid, and S U
Khan. FogNetSim++: A toolkit for modelling and simulation of
distributed fog environment. IEEE Access, 6:63570–63583, 2018.

[108] Thomas Rausch, Waldemar Hummer, Vinod Muthusamy, Alexan-
der Rashed, and Schahram Dustdar. Towards a serverless platform
for edge AI. Renton, WA, USA, July 2019. Proceedings of the Hot-
Edge ’19.

[109] Thomas Rausch, Alexander Rashed, and Schahram Dustdar. Opti-
mized container scheduling for data-intensive serverless edge com-
puting. Future Generation Computer Systems, 114:259–271, 2021.

[110] Nilabja Roy, Abhishek Dubey, Aniruddha Gokhale, and Larry
Dowdy. A capacity planning process for perform. assurance of
component-based distributed systems. pages 259–270, Karlsruhe,
Germany, September 2011. Proceedings of the 2nd ACM/SPEC In-
ternational Conference on Performance engineering.

[111] Maria Barbara Safianowska, Robert Gdowski, and Chingyao Huang.
Combinatorial recurrent multi-unit auctions for fog services. pages
736–741, Chiayi, Taiwan, December 2016. 2016 International Com-
puter Symposium (ICS).

[112] Lidiane Santos, Eduardo Silva, Thais Batista, Everton Cavalcante,
Jair Leite, and Flavio Oquendo. An architectural style for internet
of things systems. pages 1488–1497, Brno, Czech Repbulic, March
2020. Proceedings of the 35th Annual ACM Symposium on Applied
Computing.

46



[113] Enrique Saurez, Kirak Hong, Dave Lillethun, Umakishore Ra-
machandran, and Beate Ottenwälder. Incremental deployment and
migration of geo-distributed situation awareness applications in the
fog. pages 258–269, Irvine, CA, USA, June 2016. Proceedings of
the 10th ACM International Conference on Distributed and Event-
based Systems.

[114] Ali Shakarami, Ali Shahidinejad, and Mostafa Ghobaei-Arani. A
review on the computation offloading approaches in mobile edge
computing: A game-theoretic perspective. Software: Practice and
Experience, 50(9):1719–1759, 2020.

[115] Cagatay Sonmez, Atay Ozgovde, and Cem Ersoy. Edgecloudsim:
An environment for performance evaluation of edge computing sys-
tems. Transactions on Emerging Telecommunications Technologies,
29(11):e3493, 2018.

[116] S Sotiriadis, N Bessis, E Asimakopoulou, and N Mustafee. To-
wards simulating the internet of things. pages 444–448, Vancouver,
BC, Canada, May 2014. Proceedings of the 2014 28th International
Conference on Advanced Information Networking and Applications
Workshops.

[117] Vikram Sreekanti, Chenggang Wu, Xiayue Charles Lin, Johann
Schleier-Smith, Joseph E. Gonzalez, Joseph M. Hellerstein, and
Alexey Tumanov. Cloudburst: Stateful functions-as-a-service.
Cloudburst: Stateful Functions-as-a-Service, 13(12):2438—-2452,
2020.

[118] Wen Sun, Jiajia Liu, Yanlin Yue, and Haibin Zhang. Double
auction-based resource allocation for mobile edge computing in in-
dustrial internet of things. IEEE Transactions on Industrial Infor-
matics, 14(10):4692–4701, 2018.

[119] Moysis Symeonides, Zacharias Georgiou, Demetris Trihinas, George
Pallis, and Marios D Dikaiakos. Fogify: A fog computing emulation
framework. pages 42–54, San Jose, CA, USA, November 2020. 2020
IEEE/ACM Symposium on Edge Computing (SEC).

[120] Argyrios G. Tasiopoulos, Onur Ascigil, Ioannis Psaras, and George
Pavlou. Edge-map: Auction markets for edge resource provisioning.
pages 14–22, Chania, Greece, June 2018. 2018 IEEE 19th Interna-
tional Symposium on AWorldofWireless.

[121] The Apache Software Foundation. OpenWhisk documentation.
https://openwhisk.apache.org/documentation.html. Accessed:
2021-5-8.

[122] L Tong, Y Li, and W Gao. A hierarchical edge cloud architecture for
mobile computing. pages 1–9, San Francisco, CA, USA, April 2016.
Proceedings of the 35th Annual IEEE International Conference on
Computer Communications.

[123] Bin Wang, Ahmed Ali-Eldin, and Prashant Shenoy. Lass: Run-
ning latency sensitive serverless computations at the edge. pages
239–251, Online, Sweden, June 2020. Proceedings of the 30th Inter-
national Symposium on High-Performance Parallel and Distributed
Computing.

47

https://openwhisk.apache.org/documentation.html


[124] Shiqiang Wang, Rahul Urgaonkar, Murtaza Zafer, Ting He, Kevin
Chan, and Kin K Leung. Dynamic service migration in mobile
edge computing based on markov decision process. IEEE/ACM
Transactions on Networking, 27(3):1272–1288, 2019.

[125] Philipp Wiesner and Lauritz Thamsen. Leaf: Simulating large
energy-aware fog computing environments. pages 29–36, Online,
Australia, 2021. 2021 IEEE 5th International Conference on Fog
and Edge Computing (ICFEC).

[126] C Wöbker, A Seitz, H Mueller, and B Bruegge. Fogernetes: Deploy-
ment and management of fog computing applications. pages 1–7,
Taipei, Taiwan, April 2018. Proceedings of the NOMS 2018 - 2018
IEEE/IFIP Network Operations and Management Symposium.

[127] X Xu, D Li, Z Dai, S Li, and X Chen. A heuristic offloading method
for deep learn. edge services in 5G networks. IEEE Access, 7:67734–
67744, 2019.

[128] D. Yang, G. Xue, X. Fang, and J. Tang. Incentive mechanisms
for crowdsensing: Crowdsourcing with smartphones. IEEE/ACM
Transactions on Networking, 24(3):1732–1744, 2016.

[129] Min You, Hui Zhou, and Yan Zhuang. Research on application of
auction algorithm in internet of vehicles task scheduling under fog
environment. pages 242—-249, Xiamen, China, May 2020. Proceed-
ings of the 2020 the 4th International Conference on Innovation in
Artificial Intelligence.

[130] Xuezhi Zeng, Saurabh Kumar Garg, Peter Strazdins, Prem Prakash
Jayaraman, Dimitrios Georgakopoulos, and Rajiv Ranjan. IOTSim:
A simulator for analysing IoT applications. International Journal
of High Performance System Architectures, 72:93–107, 2017.

[131] Ben Zhang, Nitesh Mor, John Kolb, Douglas S Chan, Ken Lutz, Eric
Allman, John Wawrzynek, Edward A Lee, and John Kubiatowicz.
The cloud is not enough: Saving iot from the cloud. Santa Clara,
CA, USA, July 2015. 7th USENIX Workshop on Hot Topics in Cloud
Computing (HotCloud 15).

[132] L. Zhang, Z. Li, and C. Wu. Dynamic resource provisioning in
cloud computing: A randomized auction approach. pages 433–441,
Toronto, ON, Canada, April 2014. Proceedings of the INFOCOM.

[133] Yi Zhang, Chih-Yu Wang, and Hung-Yu Wei. Parked vehicle as-
sisted vfc system with smart parking: An auction approach. pages
1–7, Abu Dhabi, United Arab Emirates, December 2018. 2018 IEEE
Global Communications Conference (GLOBECOM).

[134] D. Zhao, X. Li, and H. Ma. How to crowdsource tasks tastfully
without sacrificing utility: Online incentive mechanisms with bud-
get constraint. pages 1213–1221, Toronto, ON, Canada, April 2014.
Proceedings of the INFOCOM.

[135] Peiyue Zhao and Gyorgy Dan. Joint resource dimensioning and
placement for dependable virtualized services in mobile edge clouds.
IEEE Transactions on Mobile Computing, 2021.

48



[136] Yangming Zhao, Xin Liu, Lai Tu, Chen Tian, and Chunming Qiao.
Dynamic service entity placement for latency sensitive applications
in transportation systems. IEEE Transactions on Mobile Comput-
ing, 20(2):460–472, 2021.

[137] Bowen Zhou, Satish Narayana Srirama, and Rajkumar Buyya. An
auction-based incentive mechanism for heterogeneous mobile clouds.
Journal of Systems and Software, 152:151–164, 2019.

[138] Yijun Zu, Fei Shen, Feng Yan, Yang Yang, Yueyue Zhang, Zhiyong
Bu, and Lianfeng Shen. An auction-based mechanism for task of-
floading in fog networks. pages 1–6, Istanbul, Turkey, September
2019. 2019 IEEE 30th Annual International Symposium on Per-
sonal, Indoor and Mobile Radio Communications (PIMRC).

49


	1 Introduction
	2 Background
	2.1 Function-as-a-Service (FaaS)
	2.2 Apache OpenWhisk
	2.3 Fog Computing
	2.4 Fog-Based FaaS Platforms
	2.5 Auctions

	3 Auction-Based Function Placement
	4 Challenges for Implementing the Approach in Practice
	4.1 C1: Auctions Arrive in Batches
	4.2 C2: Storage Space Calculation
	4.3 C3: Compute Load Estimation
	4.4 C4: Knowledge About the Next Node Towards the Cloud

	5 Evaluation: Simulation
	5.1 Simulation Implementation
	5.2 Configuration
	5.3 Simulation Experiment 1: Effect of Processing Prices
	5.4 Simulation Experiment 2: Effect of Storage Prices
	5.5 Simulation Experiment 3: Larger Deployment and Analysis of the Effect of Stickiness in Executable Management

	6 Evaluation: Prototype and Experiments
	6.1 Prototypical Implementation of AuctionWhisk
	6.1.1 Storing Function Executables
	6.1.2 Executing Function Calls

	6.2 Experiment Setup
	6.3 Experiment 1: Request Latency of AuctionWhisk vs. a Cloud-Only OpenWhisk
	6.4 Experiment 2: Effect of Storage Prices
	6.5 Experiment 3: Effect of Execution Prices

	7 Discussion
	8 Related Work
	9 Conclusion

