
Using geo-context information for efficient
rendezvous-based routing in publish/subscribe

systems
Jonathan Hasenburg, David Bermbach

TU Berlin & Einstein Center Digital Future
Mobile Cloud Computing Research Group

{jh, db}@mcc.tu-berlin.de

Abstract—A promising communication paradigm that en-
ables communication between IoT devices is broker-based pub-
lish/subscribe. When the brokers are distributed across the fog,
events and subscriptions of clients connected to different broker
instances must be routed across the router network. State-of-the
art solutions, however, do not take into account that the relevance
of the IoT data depends on its origin and purpose. Instead,
they assume a uniform data distribution when determining
where to match events and subscriptions which degrades system
performance.

In this paper, we propose a routing solution that builds
upon geo-context information attached to published events and
subscriptions. This way, we can match events close to either
the publishers or subscribers of an event, thus, minimizing
communication latency while not affecting scalability.

Index Terms—Geo-Context, IoT Data, Geo-Distributed Pub/Sub

I. INTRODUCTION

The vision of the Internet of Things (IoT) is to connect
billions of devices. These devices usually operate at the
edge of the network; thus, they might be battery powered
or have a slow and unstable connection to the wide area
network. Hence, rather than interconnecting devices directly,
communication is usually handled by some kind of distributed
middleware operating in the fog. A promising communication
paradigm for this purpose is broker-based publish/subscribe
(pub/sub) because it allows client devices to asynchronously
communicate without having to know each other [1]: they
create subscriptions (subscribers) and send events (publishers)
to any of the brokers, brokers match incoming events with
created subscriptions and deliver them accordingly.

Because a large chunk of IoT data is only relevant to a
relatively small amount of subscribers [2], which are often
operating in physical proximity to each other, communication
can often be handled by a local fog broker in the same region.
Other use cases, however, require inter-region communication,
so brokers must be connected to exchange events and/or
subscriptions they received from client devices. How this can
be achieved for IoT data continues to be an open research
question as existing approaches do not take into account that
the relevance of data depends on the data origin (i.e., the
current location of the sensor) and purpose (e.g., collecting
temperature values to control heaters in proximity or to
collecting weather information for nation wide forecasts).

In general, existing pub/sub routing strategies can be clas-
sified into the three categories flooding, gossipping, and se-
lective [3], [4]. Flooding does not scale as here every broker
has to process all events or subscriptions from every other
broker. Gossiping sacrifices latency in favor of tolerance of
very dynamic environments by distributing messages between
brokers randomly. While the IoT devices might operate in such
an environment, the brokers, to which the routing approach is
applied, do not. Instead, it is more likely that the brokers are
deployed in (a limited number of) fog regions which do not
face a high churn rate. Selective approaches are either filter-
based or build upon rendezvous points (RP). For the former,
filters are distributed across brokers and used to build dynamic
multicast trees for each event. Traversing the multicast trees,
however, increases end-to-end latency. RPs are are effective
in reducing excess data by being a “meeting point” for
subscriptions and events for the matching to occur; however,
state of the art solutions expect a uniform distribution of data,
i.e., they do not take into account that IoT data is often only
relevant in a very specific area.

In our previous research [5], [6], we showed that enriching
IoT events and subscriptions with geo-context information can
reduce excess data and enable new application scenarios. In
this paper, we propose to make additional use of this geo-
context information to select RPs to ensure data is matched
in proximity to where it is relevant which improves system
performance. For that sake, we:

• describe how to enrich events and subscriptions with geo-
context information (Section II),

• introduce our novel approach on how to use this geo-
context information to select appropriate RPs (Sec-
tion III).

Finally, we draw a conclusion and outline next steps (Sec-
tion IV).

II. ENRICHING EVENTS AND SUBSCRIPTIONS WITH
GEO-CONTEXTS

Before we explain how to use geo-context information to
select RPs, we repeat our previous definition of geo-contexts
presented in [5], [6]. Note, that we use a slightly updated
terminology, as indicated below, that better fits the intended
purpose of this paper.



Subscription Geofence

Publisher Location
(match)

Publisher Location
(no match)

Event Geofence

Subscriber Location
(match)

Subscriber Location
(no match)

Figure 1. Subscription GeoCheck (left) and event GeoCheck (right) [5], [6].

There are four geo-context dimensions. Clients have a
geographic location, which consists of a latitude and a lon-
gitude value. For publishers, the corresponding dimension is
called publisher location; for subscribers, the corresponding
dimension is called subscriber location. Beyond this, each
event and subscription has an area it relates to; we propose to
use geofences to describe these areas. The event geofence,
ensures that only subscribers located in the specified area
receive the event, i.e., subscriber locations must be inside the
event geofence. The subscription geofence, ensures that only
the events of publishers located in the specified area may be
delivered to the subscriber, i.e., publisher locations must be
inside the subscription geofence1.

For bringing geofences and locations together, two checks
are necessary to decide whether data from a given pub-
lisher should be delivered to a given subscriber (Figure 1)
– first, from the subscribers’s perspective with the help of
the subscription geofence and publisher locations (subscription
GeoCheck) and, second, from the publishers’s perspective with
the help of the event geofence and subscriber locations (event
GeoCheck). For a more detailed discussion and explanation
of the geo-context model, we refer to our previous work [5].
Furthermore, it usually makes sense to combine the two
GeoChecks with an additional ContentCheck, i.e., based on
topics. For a more detailed discussion on how this can be used
to build a (single-node) data distribution service leveraging
geo-contexts, we refer to our previous work [6]. In this
work, we describe how such single-node service instances
(here called brokers) can communicate via rendezvous-based
routing.

III. RENDEZVOUS NODE SELECTION

In this section, we present our RP selection approach that
builds upon geo-context information. RPs reduce commu-
nication cost by being a “meeting point” for subscriptions
and events: the matching occurs at the RP brokers [4, p.
166]. Hence, they constrain propagation of events and/or
subscriptions to a small subset of nodes which improves
system efficiency. A major challenge with rendezvous-based

1In previous work we referred these four dimensions as producer location,
consumer location, producer geofence and consumer geofence.

Broker 
B1

B1 Broker Area B2 Broker Area B3 Broker Area

Broker 
B2

Broker 
B3

Edge

Fog

Figure 2. Setup with three brokers deployed in the fog that facilitate
communication between publishers (squares) and subscribers (circles).

routing in wide-area deployments is to select an RP that is
close to the subscribers or publishers of an event. Many state
of the art solutions distribute RPs uniformly over available
brokers [7], [8]; this is problematic for IoT data traffic which
is non-uniform. Our key idea is to use the IoT data itself to
identify RPs physically close to publishers and/or subscribers;
this is only possible if the necessary geo-context information
is attached to the events and subscriptions.

In the following, we first describe some assumptions (Sec-
tion III-A) before we present how geo-context information
can be used to select RPs close to subscribers (Section III-B)
or close to publishers (Section III-C). Both strategies come
with their own advantages and disadvantages; which one is
better depends on the application scenario. Finally, we discuss
how both strategies compare against the baseline, flooding
of either events or subscriptions to all brokers, and other
rendezvous-based routing approaches found in the literature
(Section III-D).

A. Assumptions

For our approach, we assume a setup that comprises mul-
tiple geo-distributed brokers and clients, i.e., IoT devices and
services. Even though brokers are geo-distributed, they are
aware of each other, typically have a good inter-connection,
and are well equipped in terms of computing power; clients,
on the other hand, might operate in a constrained environment
and only communicate with a single broker, i.e., their local
broker (LB). A broker is responsible for communication with
all clients located in its broker area; usually, a broker area
covers the region surrounding the physical location of the
corresponding broker as this asserts low latency communica-
tion between the broker and clients located in the area2, see
also Figure 2. Subscriptions and published events comprise
the payload, some kind of content filter (e.g., a topic), and
geo-context information. When a client creates a subscription,
it creates the subscription at its LB. Similarly, when a client
publishes an event, it sends the event to its LB. Depending on
the strategy (Section III-B and III-C), as soon as the LB has

2Using the network distance instead of physical distance to determine
broker areas might be more accurate, but is also more complicated in an
environment with changing network conditions.



EG2

EG3

EG1

B1 Broker Area B2 Broker Area

P

B1
B2

Figure 3. An event only needs to be sent to brokers with a broker area that
intersects with the event geofence.

received an event or subscription, it distributes them to the RP
where the matching occurs.

B. Selecting RPs close to the subscribers

With this strategy, the RPs for an event are all brokers that
are the respectively closest broker to each of the subscribers
that have created a matching subscription. Thus, the RPs are
the LBs of these subscribers. Hence, subscriptions are not
distributed to other brokers as subscribers create subscriptions
at their LB. The event, on the other hand, is distributed to all
brokers which could possible manage a matching subscription.
Fortunately, the event geofence can be used to select these RP
because only broker areas intersecting with the event geofence
might contain clients that pass the event GeoCheck (subscriber
location inside event geofence).

Figure 3 shows an example with one publisher (P) that is
located in the broker area of broker B1 and publishes three
events—each has a different event geofence (EG):

• EG1 does not intersect with the broker area of broker B2
so the event does not need to be forwarded for matching
to B2.

• EG2 intersects with the broker areas of B1 and B2 so the
event needs to be matched at B1 and be forwarded for
matching to B2.

• EG3 only intersects with the broker area of B2 so the
event needs to be forwarded for matching to B2. Note,
that matching at B1 can be omitted, as no subscription
created by the clients located in the broker area of B1
can pass the event GeoCheck.

C. Selecting RPs close to the publishers

With this strategy, the RP for an event is the broker closest
to the publisher of that event. Thus, the RP is the LB of the
publisher. While this means matching only occurs at a single
broker, it also implies that all subscriptions must be distributed
to all brokers to which a matching event might be published;
subscription updates must also be propagated in a similar
fashion. Fortunately, the subscription geofence can be used to
select these RPs because only broker areas intersecting with
the subscription geofence might contain clients that pass the

S

SG1

SG2

SG3

B1 Broker Area B2 Broker Area

B1
B2

Figure 4. A subscription only needs to be sent to brokers with a broker area
that intersects with the subscription geofence.

subscription GeoCheck (publisher location inside subscription
geofence).

Figure 4 shows an example with one subscriber (S) that
is located in the broker area of broker B1 and creates
three subscriptions—each has a different subscription geofence
(SG):

• SG1 does not intersect with the broker area of broker B2
so the subscription does not need to be forwarded to B2.

• SG2 intersects with the broker areas of B1 and B2 so
the subscription needs to be maintained at B1 and be
forwarded to B2.

• SG3 only intersects with the broker area of B2 so the
subscription needs to be forwarded to B2. Note, that the
subscription can be discarded at B1, as none of the clients
managed by B1 can publish an event that passes the
subscription GeoCheck.

After matching the event, it still needs to be distributed to
the LBs of subscribers with matching subscriptions as these
brokers are the ones communicating with the subscribers.

D. Discussion

It is straightforward to calculate how many inter-region
messages can be saved when using our rendezvous node
based approaches compared to a flooding solution for a given
event/subscription. In both cases, the given event/subscription
must only be distributed to the brokers whose broker areas
intersect with the corresponding geofence, rather than to
all brokers participating. Consider the following example: if
one data-distribution broker instance runs in each of the 21
currently available AWS regions, a published event that is only
targeted at clients in Europe would have an event geofence
that only intersects with the broker areas of 5 AWS regions
and thus reduces the amount of inter-node messages by 16
(>75%). In case of more dense deployments or events that
are only relevant to an even smaller number of subscribers,
benefits could become even higher.

We see the most closely related work in two areas:
rendezvous-based pub/sub, e.g., [7]–[9], and geo-distributed,
location-based pub/sub, e.g., [2], [10]–[12]. Still, none of these
approaches aims to use geo-context information to select RPs
close to the publishers or subscribers of an event.



With our current approach, each broker has to know about
all other brokers and their broker areas. This is plausible,
if the number of brokers is limited to, for example, one
very scaleable instance per AWS data center. One interest-
ing aspect about rendezvous-based routing is, however, that
matching not always has to occur at the RP when there is
a network/hierarchy of nodes. This could potentially be used
to further extend our approach to support broker deployments
in which not all brokers are connected directly, e.g., because
some brokers are also running at the Edge.

IV. CONCLUSION

In this paper, we proposed to make use of geo-context
information attached to published messages and subscriptions
to select RPs. By doing so, we can ensure that events and
subscriptions are matched close to the publishers or sub-
scribers of an event. This can significantly reduce the amount
of data that needs to be distributed between geo-distributed
broker instances. In the future, we plan to more thoroughly
study the effects of our approach on excess data and quantify
effects on system characteristics such as the communication
latency between IoT devices. We are currently implementing a
broker prototype for use case driven experiments and are also
preparing a simulation-based study.

REFERENCES

[1] P. Bellavista, A. Corradi, and A. Reale, “Quality of service in wide scale
publish-subscribe systems,” IEEE Communications Surveys & Tutorials,
vol. 16, no. 3, pp. 1591–1616, 2014.

[2] R. Banno, S. Takeuchi, M. Takemoto, T. Kawano, T. Kambayashi, and
M. Matsuo, “Designing overlay networks for handling exhaust data in
a distributed topic-based pub/sub architecture,” Journal of Information
Processing, vol. 23, no. 2, pp. 105–116, 2015.

[3] R. Baldoni, L. Querzoni, and A. Virgillito, “Distributed event routing in
publish/subscribe communication systems: a survey,” p. 27, 2005.

[4] Sasu Tarkoma, Publish/Subscribe Systems - Design and Principles, ser.
Wiley Series in Communications Networking & Distributed Systems.
Wiley, 2012.

[5] J. Hasenburg and D. Bermbach, “Towards geo-context aware IoT data
distribution,” in 4th Workshop on IoT Systems Provisioning & Manage-
ment for Context-Aware Smart Cities (ISYCC). Springer, 2019.

[6] ——, “GeoBroker: Leveraging geo-context for IoT data distribution,”
Computer Communications, 2020.

[7] A. Rowstron, A.-M. Kermarrec, M. Castro, and P. Druschel, “Scribe: The
design of a large-scale event notification infrastructure,” in Networked
Group Communication, J. Crowcroft and M. Hofmann, Eds. Springer
Berlin Heidelberg, 2001, vol. 2233, pp. 30–43.

[8] P. Pietzuch and J. Bacon, “Hermes: a distributed event-based middle-
ware architecture,” in Proceedings 22nd International Conference on
Distributed Computing Systems Workshops. IEEE, 2002, pp. 611–618.

[9] A. Gupta, O. D. Sahin, D. Agrawal, and A. El Abbadi, “Meghdoot:
Content-based publish/subscribe over p2p networks,” in Middleware
2004, H.-A. Jacobsen, Ed. Springer Berlin Heidelberg, 2004, vol. 3231,
pp. 254–273.

[10] G. Cugola and J. Munoz de Cote, “On introducing location awareness in
publish-subscribe middleware,” in 25th IEEE International Conference
on Distributed Computing Systems Workshops. IEEE, 2005, pp. 377–
382.

[11] Y. Teranishi, R. Banno, and T. Akiyama, “Scalable and locality-aware
distributed topic-based pub/sub messaging for IoT,” in 2015 IEEE
Global Communications Conference (GLOBECOM). IEEE, 2015, pp.
1–7.

[12] R. Kawaguchi and M. Bandai, “A distributed MQTT broker system for
location-based IoT applications,” in 2019 IEEE International Conference
on Consumer Electronics (ICCE). IEEE, 2019, pp. 1–4.


