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ABSTRACT
The combination of edge and cloud in the fog computing paradigm
enables a new breed of data-intensive applications. These applica-
tions, however, have to face a number of fog-specific challenges
which developers have to repetitively address for every single appli-
cation. In this paper, we derive a set of requirements for a replication
service that aims to simplify the development of data-intensive fog
applications which are caused by the highly distributed and het-
erogeneous operation environment. Furthermore, we propose the
design for such a service which addresses our requirements.

CCS CONCEPTS
• Information systems→Datamanagement systems; Middle-
ware for databases; • Computer systems organization → Dis-
tributed architectures.
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1 INTRODUCTION
Current state-of-the-art applications are typically deployed on top
of cloud services; the cloud alone, however, is often not capable
enough for emerging application domains such as autonomous
driving, 5G mobile applications, eHealth, or the Internet of Things
(IoT) [23]. Depending on the use case, reduced end-user latency,
bandwidth limitations between sensors and cloud, or privacy chal-
lenges force developers to use fog computing instead: the combina-
tion of edge and cloud computing but also with optional small- to
medium-sized data centers in the network between cloud and edge
offers the best from both worlds [2, 20].

Due to these benefits, we have seen a number of fog applications
emerge over the last few years, e.g., [4, 8, 12, 17]; however, one
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would still expect much more adoption of the fog computing para-
digm. In [2], a number of possible reasons such as a lack of edge
services or even hardware heterogeneity are discussed. Beyond
these, we also see the problem of having to “reinvent the wheel”:
developers need to start virtually from scratch for every fog appli-
cation to get data to where it is needed by a multi-tenant application
in a highly distributed and heterogeneous environment.

In this paper, we propose the design of a data replication service
that is specifically tailored for this task. Our goal is to allow applica-
tion developers to specify data placement and data movement using
a declarative programming style while the proposed replication
service handles actual data distribution across multiple fog nodes.
Therefore, we make the following contributions1:

• We identify a set of requirements for a replication service
that aims to simplify the development of data-intensive fog
applications (section 2).

• We propose and describe the design of a novel replication
service that addresses the identified requirements (section 3).

We also discuss related work (section 4) before drawing a conclusion
(section 5).

2 REQUIREMENTS
Data-intensive fog applications encounter a number of challenges;
most of them are not new but they are significantly more pro-
nounced than in existing cloud-based systems and, thus, require
new solutions. The two most obvious challenges are the geo-dis-
tribution and heterogeneity of the runtime infrastructure. While
cloud-based systems may run in a few geo-distributed data centers
on top of more or less identical VM hardware, a fog-based system
runs on a variety of machines. These can range from single board
computers such as a Raspberry Pi to clusters of cloud VMs and
anything in between, geo-distributed over at least hundreds of sites.
For data-intensive applications, this means to handle replication
and data distribution in such an environment.

Beyond these, resources at or near the edge are limited so that
fog-based systems need to deal with much higher degrees of shared
resources, not only at the level of infrastructure resources but also
in the software stacks on top. Finally, fog-based systems need to
interface with a variety of existing systems. These could be embed-
ded cyber-physical systems at the edge, event brokers of all kinds,
or stream processing systems and legacy applications in the cloud.

Ideally, a supporting replication service deals with all these as-
pects to let application developers experience the same simplicity

1An extended version of this paper, including a replication service prototype called
FBase, is available as [11].
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in the fog that they got used to while building cloud applications.
We believe that this ideal situation is not achievable, e.g., complete
distribution transparency is not feasible in the presence of faults.
A well-designed service, however, should provide suitable abstrac-
tions to handle the complexities of, e.g., geo-distribution, while not
hiding the fact per se. Based on these premises, we identified four
main requirements:

Design for Multi-Tenancy: Due to the higher degree of shared
resources near the edge, it is not feasible to run several instances of
the replication service (or alternative services) in parallel. Instead,
such a service should be designed for multi-tenancy out of the box.

Application-ControlledData Placement:Applications should
be able to declaratively specify the placement of data. This means
that it should control the placement of data while the underlying
service handles data replication, movement, and distribution where
and when necessary. This still exposes the fact that different sites
exist but takes the hassle out of it.

Hiding Infrastructure Heterogeneity:An application should
not have to worry about the number and kind of available machines
at a particular site. Instead, these should be exposed through suit-
able abstractions, e.g., the total amount of available resources, while
the service handles load balancing, scheduling, and resource man-
agement.

Ability to Interface with Existing Systems:A data-intensive
fog application very likely needs to interact with other applications
and systems, particularly at the edge but also in the cloud. The data-
handling service should provide this functionality as part of the
data management tasks as data-intensive applications will interact
with other systems to either ingest or expose data. The application
should be able to specify such interfaces in the same declarative
way that it uses for data placement.

3 REPLICATION SERVICE DESIGN
The main goal of our service design is to provide applications
with the means to control data replication and data flow across
geo-distributed sites using a declarative programming style. As a
typical example, consider the following application: an IoT sensor
produces data at the edge (e.g., a temperature sensor), triggers a
local actuator (e.g., a smart blind), and buffers data at a nearby
edge node. This data is then replicated to an intermediary node,
e.g., at the regional level, where it is merged with data from other
sensors, aggregated, and then replicated to the cloud. In the cloud,
the aggregated historical data from a multitude of sensors is made
available to web-based clients.

In this example, it is irrelevant to the application which physical
machine handles the data at each site. As such, we developed the
concept of nodes to hide infrastructure heterogeneity. A node is a set
of machines at a specific geographic location. Nodes self-organize
and application clients (or other nodes for that matter) can choose
to interact with any machine of a given node. We describe this
concept in more detail in section 3.2.

In addition, the application can control data placement and data
flows in a declarative way. For this, we propose the concept of
keygroups which group data items that should be handled in the
same way; each keygroup has metadata that describes which nodes
are handling the keygroup. Nodes can be involved in two roles

(simultaneously): first, as replica nodes which persist data locally
and serve application requests (e.g., get or put); second, as trigger
nodes which passively listen to any updates on the keygroup data
and expose these updates via an event-based interface. One purpose
of the latter is to interface with existing systems; in our example
above, this means triggering the local actuator at the edge and
triggering the data merge on the intermediary node.

Node details, the geo-location of sites, and other information are
available to applications through our cloud-based naming service.
We describe the naming service in more detail in section 3.1 and
the details of keygroup and data distribution in sections 3.3 and 3.4.

Finally, since keygroups are entirely isolated from each other,
our service is inherently designed for multi-tenancy.

3.1 Naming and Configuration Management
For tasks such as access control or infrastructure management, it is
necessary to assert that machines have unique IDs and that configu-
ration data is stored with strict consistency guarantees. In contrast,
application data can often tolerate eventual consistency [22].

For configuration data, our design comprises a component called
naming service that handles naming (i.e., assignment of unique
IDs) and storage of configuration data. IDs are immutable and are
tombstoned when they are no longer needed. This means that other
machines can safely cache configuration data and also share it with
other machines so that the naming service itself is only involved
when adding or removing machines. Overall, the naming service
acts as the single point of truth for configuration data and naming
in case of conflicts.

As the naming service stores no application data, which is likely
to be updated frequently, its load is usually low; hence, it is unlikely
to become a scaleability bottleneck. Furthermore, as long as the
naming service offers the functionality described above, it can be
implemented in various ways, e.g., as a centralized service or using
a peer-to-peer (P2P) approach.

3.2 Nodes: Managing Collocated Machines
To hide the complexity caused by infrastructure heterogeneity and
geo-distribution, we propose an abstraction for collocated machines
called nodes, as such machines often have the same purpose and are
used to scale-out systems. For instance, in an IoT scenario where
sensor data is preprocessed at the edge before sending it to a cloud
backend, a machine at the edge has to handle data of only a very
limited number of sensors while the cloud backend has to handle
the data from all edge devices. An obvious solution to this is to
have several (preferably stateless) cloud machines behind a load
balancer with a shared storage system. Therefore, nodes are groups
of collocated machines at the same geographical site that have a
shared purpose and use a shared data storage system for persistence.
Overall, this means that our design has two levels of infrastructure
abstraction: on a node level, machines are organized as a P2P system
of nodes (see also figure 1); within a node, machines are organized
as P2P with a shared persistence tier.

This allows us to strictly separate data distribution functional-
ity from scaling mechanisms: nodes have a unique name so that
messages and data are always addressed to a node instead of to
a specific machine. The machine of the target node that ends up
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Figure 1: The replication service is a P2P System of Nodes
which Comprise a P2P System of Machines Each

processing this message is hidden from all entities outside of that
target node. The strict separation of responsibilities is also helpful
for infrastructure membership management: at the node level, there
will only be very low churn and even temporary unavailabilities
of nodes can be expected to be infrequent due to the built-in re-
dundancy. Also, this helps to keep the load on the naming service
at a low level as the more frequent machine churn can be handled
within nodes without involving the naming service.

3.3 Keygroups: Encapsulating Logically
Coherent Data

Applications often have groups of data items that should be handled
in the same way, i.e., they should use the same access policies,
should be replicated in the same way, and will often be queried
together. Typical examples for this are a sequence of time series
values produced by a specific sensor or user records that would be
stored in the same table of a relational database. Comparable to
the entity groups in Megastore [1], we use the concept of so-called
keygroups for handling such groups of logically coherent data items
which allows natural sharding.

Each keygroup has a globally unique name, some keygroup meta-
data, as well as the actual data records. The keygroup metadata
holds a number of application-defined policies which specify how
data should be replicated (see section 3.4) and which clients should
have access to the data. This is the key mechanism to give applica-
tions control over data distribution.

While keygroup creation and metadata updates (such as giving
another party access) need to be confirmed by the naming service,
each involved node also stores a copy to reduce load on the naming
service and to reduce latency. This naming service dependence
ensures that keygroups have globally unique names and that only
authorized parties can access the respective data records.

The data records within a keygroup each comprise an unordered
set of key-value pairs along with some per-record metadata, in
particular update timestamps. As this abstraction is (on purpose)
very similar to the BigTable [3] interface, it is relatively simple
to utilize any of the widely used, scalable column stores as node
persistence tier.

For multi-tenant setups, we propose to use a keygroup naming
scheme that maps a keygroup to its tenant, e.g., by including the
application id, user id, and data record description. This would lead
to names such as “SmartHomeApp.SomeUser.Temperatures”.

replicates sensor data

Temperature Sensor
Client

Aggregator

Trigger Node B

Replica Node DReplica Node C

TTL 
10 min

Replica Node A

Keygroup 1

Keygroup 2 Cloud

Edge

Figure 2: Example: Using Replica and Trigger Nodes to Con-
trol Data Distribution

3.4 Distribution of Data
In our design, there are two primary mechanisms for data dis-
tribution that are both specified on a per-keygroup level in the
keygroup metadata: replication and transmission. For replication, a
set of so-called replica nodes is defined that (i) each stores a copy
of the respective keygroup’s data records and (ii) accepts updates
on data records of that keygroup which are then forwarded to all
other nodes that are part of the keygroup’s node set. Transmission,
in contrast, is a mono-directional update propagation mechanism
where the so-called trigger nodes receive updates from the replica
nodes but have only read access to the data records. Trigger nodes
specifically exist to integrate legacy applications or external sys-
tems such as a stream processing system through an event-based
interface that exposes an update stream. As defined in section 2,
developers should not have to worry about infrastructure man-
agement and heterogeneity. Thus, to replicate data to nodes in a
specific geographic area, developers can query the naming service
about adequate target nodes as the geo-location is part of the node
metadata. Then, the only action left is to add these nodes to the
keygroup; the replication service takes care of the rest.

In practice, replica nodes may store incomplete replicas as appli-
cations can also specify a time-to-live (TTL) for each replica node
of a keygroup, i.e., these replicas will store data records only for a
limited period of time. This is particularly useful for edge nodes
with limited storage capacity but can also be used to instantiate a
buffered data stream that is accessible both as update stream and
in an OLTP fashion. The combination of node types and TTL al-
lows applications to specify arbitrary data distribution schemes as
needed. See figure 2 for a typical IoT example use case: temperature
information is ingested at the edge and buffered there for 10 min-
utes as defined by Keygroup 1. In addition, an external aggregator
component based on a trigger node continuously reads the tem-
perature information from the keygroup and forwards aggregated
values to the cloud where they are stored persistently. Keygroup 2
ensures that all the aggregated data is replicated to a second cloud
node. Note, that a node can take the role of a replica node and
trigger node of the same keygroup at the same time to fulfill both
functionalities; in the example, a single node can act as Replica
Node A and Trigger Node B.
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4 RELATEDWORK
Fog computing is still a relatively new computing paradigm. As
such, there are many open research questions left, e.g., [2, 7, 19, 20],
and there is only a limited number of existing publications in this
research area.

Still, a number of papers on data management systems in fog
environments exist, e.g., [15, 21, 23]. In difference to our approach,
however, these generally do not provide such a fine-grained control
of data distribution and replication as offered by our keygroups.

Furthermore, [13, 18] propose data storage systems that make
use of edge resources. Both systems, however, make use of a central
coordinator that has to handle application data or at least keeps
track of changes. Our coordinator, the naming service, only (pas-
sively) handles metadata management.

Based on their previous experiments [6], Confais et al. [5] try
to make IPFS fog-ready. For this, they modify IPFS so that it does
not read from the local file system but rather uses a local (per site)
NAS system. While this solves parts of their data locality problems,
IPFS is still based on the concept of immutable files which makes
it more suitable for content delivery network use cases than for
applications with frequent data updates: in such scenarios, IPFS
will quickly hit the scalability ceiling.

Finally, a number of papers specifically aims to identify the
“optimal” node for data placement. To solve this fog-related problem
in geographically distributed systems with many instances, Gupta
et al. [9, 10] as well as Mayer et al. [14] propose mechanisms to find
suitable replication targets considering the physical data location
and node stress levels. Naas et al. [16] formalize this assignment
problem and propose a heuristic approach for solving it. Combining
such approaches with our keygroups might be a promising avenue
to pursue.

A more comprehensive discussion of related work can be found
in our extended version [11].

5 CONCLUSION
Emerging application domains such as autonomous driving or the
Internet of Things often rely on edge computing, e.g., to circumvent
bandwidth limitations or to profit from low latency communication
with end users. However, as edge resources are inherently limited,
fog computing as a paradigm which combines edge and cloud has
recently emerged to combine the benefits of both worlds. While
there are already a number of fog applications, we see – among
others – the lack of supporting tools and services for running on
and integrating both edge and cloud as one of the main reasons for
the slow adoption of the fog computing paradigm.

In this paper, we identified a set of requirements that a replication
service for data-intensive fog applications should satisfy. Based on
these requirements, we proposed and described the design of a
replication service that addresses these requirements. This service,
for example, allows applications to simply describe how data should
be distributed rather than handling data management themselves.
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