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Abstract—Fog computing is an emerging computing paradigm
that uses processing and storage capabilities located at the edge,
in the cloud, and possibly in between. Testing fog applications,
however, is hard since runtime infrastructures will typically be
in use or may not exist, yet.

In this paper, we propose an approach that emulates such in-
frastructures in the cloud. Developers can freely design emulated
fog infrastructures, configure their performance characteristics,
and inject failures at runtime to evaluate their application in
various deployments and failure scenarios. We also present our
proof-of-concept implementation MockFog and show that appli-
cation performance is comparable when running on MockFog or
a small fog infrastructure testbed.

Index Terms—Programming models, abstractions, and soft-
ware engineering for fog computing; Fog computing applications
and experiences

I. INTRODUCTION

Fog computing is an emerging computing paradigm that
uses processing and storage capabilities located at the edge,
in the cloud, and possibly in between to deal with increasing
amounts of IoT data but also to address latency and privacy
requirements from use cases such autonomous driving, 5G,
and eHealth [1]–[3].

However, even though fog computing has many advantages,
there are currently only a few fog applications and “com-
mercial deployments are yet to take off” [4]. Arguably, the
main adoption barrier is the deployment and management of
physical infrastructure, particularly at the edge, which is in
stark contrast to the ease of adoption in the cloud [1].

In the lifecycle of a fog application, this is not only a
problem when running and operating a production system
– it is also a challenge in application testing: While basic
design questions can be decided using simulation, e.g., [5]–
[7], there comes a point when a new application needs to be
tested in practice. The physical fog infrastructure, however,
will typically be available for a very brief period of time only:
in between having finished the physical deployment of devices
and before going live. Before that period, the infrastructure
presumably does not exist and afterwards its full capacity
is used in production. Without an infrastructure to run more
complex integration tests or to test fault-tolerance in wide area
deployments, however, the application developer is left with
guesses, (very small) local testbeds, and simulation.

In this paper, we propose to emulate fog infrastructures in
the cloud: cloud machines are trivial, the challenging ones

are the non-cloud machines. In an emulated fog environment,
edge machines are deployed in the cloud as well which is
then configured to closely mimic the real (or planned) fog
infrastructure. By using basic information on network perfor-
mance and failure rates, either obtained from the production
environment or based on expectations and experiences with
other applications, interconnections between emulated fog
machines can be manipulated to show similar characteristics.
Likewise, performance measurements from real fog machines
can be used to determine resource limits on cloud-deployed
Docker1 containers. This way, fog applications can be dock-
erized and fully deployed in the cloud while experiencing
comparable performance and failure characteristics as a real
fog deployment2.

For this purpose, we make the following contributions.

• We propose MockFog, a system design for the emulation
of fog computing infrastructure in arbitrary cloud envi-
ronments and discuss how the infrastructure setup process
integrates into an application engineering process.

• We present our proof-of-concept implementation which
allows developers to quickly model, configure, and de-
ploy an emulated fog infrastructure on either Amazon
EC23 or OpenStack4.

While testing in an emulated fog will never be as “good”
as in a real production fog environment, it is certainly better
than simulation-based evaluation only. Moreover, it allows
application engineers to test arbitrary failure scenarios, future
runtime environments or application deployment techniques at
large scale, which is also not possible on small local testbeds.

This paper is structured as follows: We first describe the
MockFog design and explain how it is used within a fog
application engineering process (sec. II). Then, we present our
proof-of-concept implementation (sec. III) and its evaluation
based on microbenchmarks and experiments with an example
fog application (sec. IV). Finally, we compare MockFog to
related work (sec. V) before a discussion (sec. VI) and
conclusion (sec. VII).

1https://docker.com
2When the application deployment itself is not dockerized, developers need

to account for dockerization impacts in the configuration of MockFog [8], [9].
3https://aws.amazon.com/ec2/
4https://openstack.org



II. MOCKFOG DESIGN

In this section, we give an overview of the MockFog Design.
For this purpose, we start with a high-level overview of how
MockFog is used within an application engineering process
(sec. II-A), describe the abstractions used in our model of
a fog infrastructure (sec. II-B), and give an overview of
the core components of MockFog and how they instantiate
the infrastructure model in the cloud (sec. II-C). Finally,
we describe how MockFog can be used in failure testing
(sec. II-D).

A. Using MockFog in Application Engineering

A typical application engineering process starts with re-
quirements elicitation, followed by design, implementation,
testing, and finally maintenance. In agile, continuous integra-
tion and DevOps processes, these steps are executed in short
development cycles, often even in parallel – with MockFog,
we primarily target the testing phase. Within the testing phase,
a variety of tests could be run, e.g., unit tests, integration tests,
system tests, or acceptance tests [10] but also benchmarks
to better understand system quality levels of an application,
e.g., performance, fault-tolerance, data consistency [11]. Out
of these tests, unit tests tend to evaluate small isolated features
only and acceptance tests are usually run on the production
infrastructure; often, involving a gradual roll-out process with
canary testing, A/B testing, and similar approaches, e.g., [12].
For integration and system tests as well as benchmarking,
however, a dedicated test infrastructure is required. Therefore,
we target these kind of tests with MockFog.

For using MockFog, developers first need to model the prop-
erties of their desired (emulated) fog infrastructure, namely
the number and kinds of machines but also the properties of
their interconnections (we describe this in detail in sec. II-B).
While this modeling phase is a lot of effort, it only needs to
be completed once as the model itself can be persisted and
reused. Part of MockFog is a visual editor which supports
the modeling phase. Once an infrastructure model has been
created, MockFog can automatically instantiate the described
infrastructure in the cloud (infrastructure bootstrapping phase)
so that developers can deploy a to be tested application version
in the emulated fog environment. Finally, the desired tests and
benchmarks can be executed – here, MockFog offers capabili-
ties to inject a variety of failures at runtime so that developers
can also analyze the fault-tolerance of their application.

We imagine that developers specify the infrastructure model
as part of the setup of their deployment pipeline (see figure 1).
When a new version of the application has then passed all unit
tests, the infrastructure bootstrapping and application deploy-
ment phase can be executed as if testing a standard cloud
application. Finally, the emulated infrastructure can either be
destroyed automatically or the developer can keep it running
to interactively play out failure scenarios (see sec. II-D).

B. Fog Infrastructure Model

A typical fog infrastructure comprises edge machines, cloud
machines, and possibly also machines within the network
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Figure 1. MockFog as Part of an Application’s Deployment Pipeline

between edge and cloud [1]. On an abstract level, this can
be described as a graph comprising machines as vertices and
the networks between machines as edges [13]. In this graph,
machines and network connections can also have properties
such as the compute power of a machine or the available
bandwidth of a connection. During the infrastructure modeling
phase, the developer starts with the specification of such an ab-
stract graph before assigning properties to vertices and edges.
In the following, we will describe the properties supported by
MockFog.

1) Machine Properties: Machines are the parts of the
infrastructure on which application code is executed. Fog
machines can appear in various different ways, from small
edge devices such as Raspberry Pis5, over machines within
a server rack, e.g., as part of a Cloudlet [2], [14], to virtual
machines provisioned through a public cloud service such as
Amazon EC2.

Table I
PROPERTIES OF EMULATED MACHINES

Property Description

Compute Power Indicator for the Performance
Memory Amount of Available Memory
Storage Amount of Available Storage

To emulate this variety of machines in the cloud, their
properties need to be described precisely. Typical properties
of machines are compute power, memory, and storage – see
also table I. Network I/O would be another standard property,

5https://raspberrypi.org



however, we chose to model this only as part of the networks
in between machines.

While the memory and storage property are self-
explanatory, we would like to emphasize that there are dif-
ferent approaches for the measurement of compute power.
Amazon EC2, for instance, uses the amount of vCPUs to
indicate the compute power of a given machine. This, or the
number of cores, is a very rough approximation that, however,
suffices for many use cases as typical application deployments
rarely achieve 100% CPU load. As an alternative, it is also
possible to use more generic performance indicators such as
instructions per seconds (IPS) or floating point operations
per second (FLOPS). Our current proof-of-concept prototype
relies on Docker’s resource limits or even the bare number of
CPU cores on a cloud VM. If more fine-grained settings are
necessary, e.g., based on IPS, an alternative implementation
might use tools such as Cpulimit6 to limit the resources
available to a specific application.

2) Network Properties: Within the infrastructure graph,
networks connect machines: only connected machines can
communicate. In real deployments, these connections usually
have diverse network characteristics [4], e.g., slow and unreli-
able connections at the edge and fast and reliable connections
near the cloud, which strongly affects applications running on
top of them. These characteristics, therefore, also need to be
modeled – see table II for an overview of our model properties.
For example, if a connection between machines A and B has
a delay of 10ms, a dispersion of 2ms, and a package loss
probability of 5%, a package sent from A to B would have a
mean latency of 10ms, a standard deviation of 2ms, and a 5%
probability of not arriving at all.

Table II
PROPERTIES OF EMULATED NETWORK CONNECTIONS

Property Description

In-rate Incoming Bandwidth7

Out-rate Outgoing Bandwidth
Delay Latency of Outgoing Packages
Dispersion Delay Dispersion (+/-)
Package loss Probability of Package Loss
Corruption Probability of Package Corruption
Reorder Probability of Package Reordering
Duplicate Probability of Package Duplication

In most scenarios, machines are not connected directly to
each other. Instead, machines are connected to switches and
routers which are then connected to each other. We decided to
also reflect such virtual routers in our infrastructure model as it
reduces complexity of the infrastructure graph by dimensions.
See figure 2 for an example with routers and imagine having to
model the cartesian product of machines instead. In the graph,
network latencies are calculated as the weighted shortest path

6https://github.com/opsengine/cpulimit
7Internally, we model the network graph as shown, e.g., in fig. 2, as two

directed graphs – one for each direction.
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Figure 2. Example: Infrastructure Graph with Machines (M), Routers (R),
and Network Latency per Connection

between two machines. For instance, if the connection between
M2 and R1 (in short: M2-R1) has a delay of 5ms, R1-R2
has 4ms, and R2-M6 has 1ms, the overall messaging delay is
10ms.

C. Infrastructure Bootstrapping

During the infrastructure bootstrapping phase, the existing
infrastructure model is instantiated in the cloud. For this pur-
pose, each fog machine in the infrastructure model is mapped
to a single cloud VM. VM type selection is straightforward
when the cloud service accepts the machine properties as input
directly, e.g., on Google Compute Engine. If not, e.g., on
Amazon EC2, the mapping needs to select the smallest VM
that still fulfills the respective machine properties. If these
are unbalanced, e.g., a small amount of memory combined
with a very high number of CPU cores, it may be necessary
to specify additional constraints on the resources available to
application code. In a next step, the network properties need
to be emulated.

For the instantiation of infrastructure models, MockFog
has two main components: the node manager and the node
agents. There is only a single node manager instance in each
MockFog setup. It parses the infrastructure model, connects to
the respective cloud provider, sets up VMs and networks, and
installs a node agent on each VM. Node agents, in contrast,
manipulate their respective VM to show the desired network
characteristics to applications.

Figure 3 shows an example with four VMs: one runs the
node manager, two the emulated edge machines, and one a
single “emulated” cloud machine. Once the node manager has
spawned all instances and installed the node agents, it instructs
the node agents to manipulate network properties such as the
delay for direct communication between the two edge VMs
so that it appears as if all network traffic were routed through
the cloud VM.

Overall, the node manager is the point of entry for applica-
tion developers and, thus, is not only able to spawn new VMs
and forward configuration details to node agents. It also offers
a browser-based graphical user interface so that developers
can easily create, edit, and manage infrastructure models but
also handle failure testing (see sec. II-D). Beyond the user
interface, the node manager also offers its entire functionality
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Figure 3. Example: MockFog Node Manager and Node Agents

via API endpoints so that MockFog can easily be integrated
into existing automated testing workflows.

While the node agents can also be used to emulate network
partitioning, MockFog always asserts that the node manager
can continue to reach each VM. For this, we rely on dedicated
management networks. We discuss more details of our proof-
of-concept implementation of MockFog in sec. III.

Once the infrastructure bootstrapping phase has been com-
pleted, the developer can roll-out the application to MockFog
in the application deployment phase. For this phase, MockFog
provides IP addresses and access credentials for the emulated
fog machines that can be used with standard deployment
tooling.

D. Failure Testing

Optionally, as also shown in fig. 1, a build process can lead
to a failure testing phase. In such a phase, failures are artifi-
cially injected to analyze how the application behaves in the
presence of such failures, e.g., network partitioning, machine
crashes, and others. This is particularly useful, as failures are
common in real deployments but will not necessarily occur
while the application is being tested. Hence, artificial failures
are the go-to approach to test fault-tolerance and resilience of
an application [15].

In MockFog, all properties of emulated machines and
network connections (tables I and II) can be manipulated at
application runtime. For example, it is possible to suddenly
limit the amount of available memory (e.g., due to noisy
neighbors), make certain connections temporarily unavailable,
increase messaging delays or package loss probabilities, or
render a machine completely unreachable in which case all
communication to and from the respective VM is blocked.
As these failures are enacted through the same mechanism as
the fog emulation itself, MockFog can store current property
settings as snapshots. Developers can then simply preconfigure
complex failure scenarios and quickly switch between the
scenario snapshots.

For simple scenarios, we envision that all manipulations are
done manually in the node manager’s user interface, i.e., by
updating the infrastructure model. However, to facilitate more
complex, automated testing scenarios, all properties can also

be updated through the node manager API. Thereby, tools such
as Netflix’s Chaos Monkey [16] can manipulate properties at
random in order to test an application’s runtime characteristics
in the most extreme situations. The API may also be used in
order to integrate MockFog in continuous testing pipelines.

III. PROOF-OF-CONCEPT IMPLEMENTATION

In this section, we describe the proof-of-concept implemen-
tation of MockFog.

MockFog has been developed with the goal of independence
from specific IaaS cloud providers and can therefore be ex-
tended to the product of choice. Our current proof-of-concept
prototype integrates with Amazon EC2 and OpenStack as
private cloud. While both versions have been implemented,
the one for Amazon EC2 is slightly more powerful and stable
than the OpenStack branch, so that we will base the following
all on the EC2 branch only.

We have released our proof-of-concept as open source8

software. In the following, we will describe the three main
components MockFog Initializer, Node Manager, and Node
Agent.

A. MockFog Initializer

The MockFog Initializer is supposed to run either on the
developer’s local machine or within the build pipeline. Its main
purpose is to start a VM for the Node Manager as well as to
deploy and start the Node Manager. This way, a developer only
needs to clone our Git repository and run a script instead of
managing software stacks manually. At this point the developer
grants access to the cloud provider by entering the necessary
credentials.

For the implementation of the MockFog Initializer, we rely
on the Infrastructure as Code (IaC) paradigm. Following this
paradigm, an infrastructure definition tool serves to “define,
implement, and update IT infrastructure architecture” [17].
The main advantage of this lies in the ability to define in-
frastructure declaratively and roll it out in an idempotent way.
In our implementation, we use Ansible9 playbooks combined
with Python and Linux shell scripts. Possible extensions of this
component would be adding support for other IaaS providers
such as the Google Cloud Platform or Microsoft Azure.

B. Node Manager

The Node Manager is the central component serving a
RESTful API and a Graphical User Interface (GUI). Based
on API or GUI input, it triggers a local IaC component to
roll out the Node Agents (IAC in fig. 4), handles import,
export, and versioning of infrastructure models, and distributes
deduced connectivity metrics to the Node Agents. Through the
GUI, application developers can create and edit infrastructure
models; the Node Manager performs integrity checks to avoid
impossible combinations of machines and their connections
while providing feedback to the developer. Furthermore, a ver-
sioning feature makes it easy to create model variations (i.e.,

8https://github.com/OpenFogStack/MockFog-Meta
9ansible.com



Table III
OVERVIEW OF NODE MANAGER SERVICES

Port/Path Service Description

80/ nginx Web server serving the Node Man-
ager’s GUI

5001/ flask Node Manager controller that can
reboot single containers

8888/ swagger-ui Swagger UI that provides API doc-
umentation

7474/ neo4j-console Neo4j Browser for querying, visual-
ization, and manual data interaction

7474/webapi node-manager-api API of Node Manager

saving different topologies), which is especially helpful when
an application’s runtime characteristics should be evaluated
for multiple testing infrastructures. The versioning feature also
supports import and export of infrastructure models as well as
branching of versions, meaning that a slightly different model
can be based on a previous version while keeping both. For
storage of infrastructure models and versioning, we use a neo4j
graph database10.

In order to mimic changes on an already bootstrapped
model, e.g., during failure testing, the Node Manager deduces
all necessary properties from the infrastructure model and,
subsequently, instructs all Node Agents to override their
current configuration in accordance with the updated model.
This means that each property change in the infrastructure
model causes the Node Manager to call every Node Agent
to completely override its current configuration. While this is
certainly a significant overhead, we decided on this approach
since it reduces the likelihood of consistency issues; should in
any way such a problem arise, the Node Manager can simply
rebroadcast the model.

In order to be independent from introduced network prop-
erties (such as an increased delay) while updating, the Node
Manager controls the machines via a dedicated “management
network”, which is provided by an automatically created
router within the MockFog environment and never used by
the running fog application. Additionally, we provide a ping
endpoint, which allows to keep track of the latency to the
machines.

The Node Manager was built with Java EE as enterprise web
service framework using JAX-RS, neo4j as graph database
system11, nginx12 for serving the static frontend parts, Python
Flask-Restplus13 for monitoring tasks, and Swagger14 as well
as the OpenAPI specification15 for API documentation and
testing. All neo4j service classes are built on top of JAX-
RS and implement the REST endpoints of the Node Manager
within the neo4j server process. Speaking in neo4j terms, the

10https://neo4j.com
11https://neo4j.com/developer/guide-neo4j-browser/
12https://www.nginx.com
13https://flask-restplus.readthedocs.io
14https://swagger.io
15https://www.openapis.org
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Figure 4. Node Agent Interaction and Lifecycle

Node Manager has been developed as an unmanaged plugin.
The subcomponents neo4j, nginx, and swagger are bundled
in separate Docker containers for separation of concerns
offering the possibility of individual operations management.
Table III gives an overview of the services running in the Node
Manager.

C. Node Agent

The purpose of the Node Agent is to actually emulate
the network properties from the infrastructure model. On
each update call, the Node Agent receives an adjacency
list containing all other VMs which should be reachable
from its corresponding VM. Reachability, here, includes the
corresponding specification of its effective metrics, how it
should be realized from the viewpoint of the Node Manager’s
infrastructure model. For implementing the reachability, we
use Linux netfilter’s CLI iptables; actual metrics (e.g., delay)
are controlled via the Linux kernel packet scheduler’s CLI
NetEm/tc. Generally, Node Agents are configured to drop
incoming packages and accept them only if the source appears
in the current adjacency list. This allows us to easily emulate
network partitioning.

The Node Agent was implemented in Python using Flask16.
See fig. 4 for an overview of the interaction between Node
Manager and Node Agents.

IV. EVALUATION

Beyond our proof-of-concept prototype, we have also eval-
uated MockFog through experiments: First, we ran a mi-
crobenchmark (section IV-A). Second, we deployed an ex-
ample application on MockFog and a “real” fog testbed and

16http://flask.pocoo.org
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benchmarked the application to compare the application’s
performance on both infrastructures (section IV-B). In this
section, we present the results from both experiments.

A. Microbenchmark

The overall goal of our microbenchmark was to show that
it is indeed possible to configure MockFog in a way that
applications will have a comparable experience, no matter
whether they are running on MockFog or on a real fog testbed.
For the testbed, we used an EC2 instance and a Raspberry Pi
in our offices. First, we ran a standard ping on the Raspberry
Pi to measure the response time from the EC2 instance; the
results can be seen in figure 5. Second, we started MockFog
and created an infrastructure model of the same test – one
emulated edge machine, one cloud machine. We used the
measured average response time from the real experiment and
provided that as an input parameter for the emulated edge to
cloud connection in our MockFog model; we did not make any
other changes to the emulated connection. Then, we repeated
the same ping test as before, this time running on MockFog.

Figure 5 and 6 show the results of 6000 ping requests
each for the connection between the physical Raspberry Pi
and the cloud as well as between the emulated MockFog
machines. Two ping requests in the MockFog test exceeded
75ms and have been omitted from the figures and we plotted
the cumulative distribution function for ping times only for
values up to 20ms to improve readability. As we can see,
both environments show very similar ping times; MockFog
has slightly more outliers which appear to have been caused
by network issues on AWS. Overall, this shows that MockFog
can provide the behavior described in the infrastructure model
even when using only very basic configuration parameters.

We would like to emphasize that this is not an obvious
measurement: the packages still need to be sent over the AWS
network which does not have zero latency. In fact, MockFog
measures real network latencies in the background and tries
to account for the measured behavior in the configuration of
the node agents. For instance, with a desired emulated network
latency of 20ms and a measured real latency of 5ms, MockFog
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would configure the node agents to cause an artificial delay of
only 15ms.

B. Application Benchmark

Applications usually produce more complicated network
and processing loads than the ones created by simple ping
requests between machines. Therefore, we also implemented
a simple prototype of the application scenario introduced by
Shneidman et al. [18] and deployed it on both a small infras-
tructure testbed and on an emulated infrastructure managed
my MockFog. We then benchmarked performance parameters
within the application.

In the scenario, ambulance cars collect patients and then
communicate with all hospitals in a city to find the closest
one with available capacity and the required specialists and
medical equipment. Once a target hospital has been selected,
the ambulance continuously sends medical sensor data to the
hospital, e.g., heart rate or arterial oxygen saturation values,
so that the emergency room is already fully informed once the
patient arrives.

In our implementation, we used RabbitMQ17 as a pub/sub
messaging middleware and built Java components for hospi-
tals, doctors, patients, and ambulance cars that can publish
and subscribe to various topics in order to communicate with
each other. In our case, RabbitMQ is deployed as a replicated
cluster in the hospitals – here represented by a cloud VM
each – while the ambulance cars interact with the cloud-
based messaging system. For the application benchmark, the
components representing doctors and patients only serve as
additional load generators for RabbitMQ. For the measure-
ment itself, the ambulance component publishes data packets
(10kB) to a particular hospital topic every 250ms. Once
the hospital components receives the data packets, it sends
back an acknowledgement to the ambulance component. The
ambulance component measures this response time as part of
our experiment.

For the physical fog infrastructure test, we allocated three
EC2 instances in AWS that each represent a single hospital and

17rabbitmq.com
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jointly run a RabbitMQ cluster as well as all non-ambulance
code. We also used two Raspberry Pis in our offices connected
to the Internet via WiFi, each running a single ambulance
component. Ideally, we would have used more than two
Raspberry Pis, but we also faced the issue highlighted in the
introduction: physical infrastructure is either not yet available
for testing, or already in use. This physical setup, including
observable average ping times is shown in figure 7.

For the emulated infrastructure, we modeled the described
scenario in MockFog and also configured the ping times
of 16ms and 20ms respectively between ambulance car and
RabbitMQ cluster as shown in figure 7; the experiment was,
thus, run on five EC2 instances.

Our results are plotted as histograms in figure 8. In neither
of our two experiments, we received messages with a response
time below 16ms; all messages with a response time larger
than 50ms are placed inside the last bucket of the chart. On
the physical infrastructure, most of the delays are between
16ms and 20ms for ambulance car 1, and 20ms and 24ms
for ambulance car 2. Both cars, however, experience higher
response response times for some of their messages (34.70%
and 35.97% of all messages for ambulance cars 1 and 2
respectively). On the emulated infrastructure, the majority
of response times for ambulance car 1 is again between
16ms and 20ms, and between 20ms and 24ms for ambulance
car 2. However, the amount of messages that experience a
higher response time is substantially smaller than on the
physical infrastructure (12.84% and 10,45% of all messages
for ambulance cars 1 and 2 respectively).

Even though the distribution of delays is different, both
ambulance cars have very similar median values on both in-
frastructures: 18.79ms and 23.08ms on the physical infrastruc-
ture, and 18.35ms and 22.35ms on the emulated infrastructure.
In fact, only the “long tail” is a bit longer on the physical
infrastructure. While the response time is on average (and
also based on the median value) very similar, the distribution
is not completely identical: Although we can add a delay
dispersion with MockFog, the applied dispersion resembles
a normal distribution (as this is what NetEm/tc implements),
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while a geometric distribution appears to be more fitting. This,
however, is an effect of the technology used in our proof-of-
concept and does not limit our general approach.

In our experiment, we did not measure failure rates (e.g.,
package loss) or even simply delay dispersion in the physical
testbed. This could easily be changed if desired. However,
even without this, we can conclude that MockFog provides
an infrastructure experience to applications that is sufficiently
close to that of their physical archetypes.

V. RELATED WORK

Evaluating and testing distributed applications in fog com-
puting environments can be very expensive as the provisioning
and management of needed hardware is costly. Thus, in recent
years, a number of approaches have been proposed which aim
to enable testing of distributed applications or services without
the need for access to fog devices, especially edge devices.

Gupta et al. [7] presented iFogSim, a toolkit to evaluate
placement strategies for independent application services on
machines distributed across the fog. In contrast to our solution,
iFogSim uses simulation to predict system behavior and, thus,
to identify good placement decisions. While this is useful in
early development stages, their approach can not be used for
testing of real application components which we support with
MockFog.

Brambilla et al. [5] proposed another system which sim-
ulates complex IoT systems with thousands of IoT devices.
Moreover, network delays and failure rates can be defined
to model a realistic, geo-distributed system. In contrast to
MockFog, it does not allow to test existing application com-
ponents as the approach relies on simulation.

Other simulation approaches include [6] which aims to find
good fog application designs or Cisco’s PacketTracer which
simulates complex networks – both cannot be used for testing
of real application components either.



Besides solutions that rely on simulations, a number of
researchers focus on the emulation of infrastructure which
makes it possible to deploy a real application rather than
simulating its workload.

D-Cloud [19], [20] is a software testing framework that uses
virtual machines in the cloud for failure testing of distributed
systems. However, D-Cloud is not suited for the evaluation
of fog applications as users cannot control network properties
such as the latency between two machines.

Building on the network emulators MiniNet [21] and Max-
iNet [21], Coutinho et al. [22], Mayer et al. [23], and Peuster
et al. [24] all target a similar use case as MockFog. Their
focus, however, is not on application testing but rather on
networks design (e.g., network function virtualization). Based
on the papers, the prototypes also appear to be designed for
single machine emulations – which limits scalability – while
MockFog was specifically designed for distributed deploy-
ment. Finally, neither of these approaches appears to support
failure testing.

For failure testing, Netflix has released Chaos Monkey
[16] as open source18. Chaos Monkey randomly terminates
virtual machines and containers running in the cloud. The
intuition behind this approach is that failures will occur much
more frequently so that engineers are encouraged to aim
for resilience. Chaos Monkey does not provide the runtime
infrastructure as we do, but it would very well complement
our approach. For instance, Chaos Monkey could be used to
control the emulation of failures in MockFog.

VI. DISCUSSION

While MockFog allows application developers to overcome
the challenge that a fog computing testing infrastructure either
does not exist yet or is already used in production, it has some
limitations. For example, it does not work when a specific local
hardware is required, e.g., when the use of a particular crypto
chip is deeply embedded in the application source code. Thus,
it tends to work well for larger edge machines at least as big
as a Raspberry Pis but has problems when smaller devices
are involved as they cannot be accurately emulated. The same
limitation holds for IoT sensors and actuators, we are still
working on mocking them in software in a generic way.

Furthermore, if the communication of a fog application is
not based on ethernet or WiFi, e.g., because sensors com-
municate via a LoRaWAN [25] such as TheThingsNetwork19,
MockFog’s approach of emulating connections between de-
vices does not work out of the box as these sensors expect to
have access to a LoRa sender. With additional effort, however,
application developers could adapt their sensor software to use
ethernet or WiFi when no Lora sender is available.

Also, emulating real physical connections is difficult as their
characteristics are often influenced by external factors such as
other users, electrical interferences, or natural disasters. While
it would be possible to add a machine learning component to

18https://github.com/Netflix/chaosmonkey
19https://www.thethingsnetwork.org

MockFog that updates connection properties based on past
data collected on a reference physical infrastructure, it is hard
to justify this effort for most use cases.

Finally, our prototype currently starts a VM for every single
node. This does not scale well when the infrastructure model
comprises hundreds of machines. Here, our approach could
easily be adapted to deploy the application code from multiple
small edge devices on only a few larger VMs.

VII. CONCLUSION

In this paper, we proposed MockFog, a system for the
emulation of fog computing infrastructure in arbitrary cloud
environments. MockFog aims to simplify the testing of fog
applications by providing developers with the means to define
and bootstrap an emulated testing infrastructure that can easily
be manipulated to facilitate different scenarios or evaluate
how failing machines and unavailable connections affect tested
applications. We evaluated our approach through a proof-of-
concept implementation as well as a number of experiments
with an example scenario and microbenchmarks and conclude
that MockFog is capable of emulating an infrastructure that
is very similar to its physical counterpart and suited for many
fog computing cases.
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