
Public Video Surveillance: Using the Fog to Increase Privacy
Martin Grambow, Jonathan Hasenburg, David Bermbach

TU Berlin & Einstein Center Digital Future
Mobile Cloud Computing Research Group

Berlin, Germany
{mg,jh,db}@mcc.tu-berlin.de

ABSTRACT
In public video surveillance, there is an inherent conflict between
public safety goals and privacy needs of citizens. Generally, societies
tend to decide on middleground solutions that sacrifice neither
safety nor privacy goals completely. In this paper, we propose an
alternative to existing approaches that rely on cloud-based video
analysis. Our approach leverages the inherent geo-distribution of
fog computing to preserve privacy of citizens while still supporting
camera-based digital manhunts of law enforcement agencies.

CCS CONCEPTS
• Computer systems organization → Distributed architec-
tures; • Social and professional topics→ Surveillance; Govern-
mental surveillance;

KEYWORDS
Fog Computing, Edge Computing, Public Video Surveillance, Face
Recognition
ACM Reference Format:
Martin Grambow, Jonathan Hasenburg, David Bermbach. 2018. Public Video
Surveillance: Using the Fog to Increase Privacy. In 5th Workshop on Mid-
dleware and Applications for the Internet of Things (M4IoT’18), December
10–11, 2018, Rennes, France. ACM, New York, NY, USA, 4 pages. https:
//doi.org/10.1145/3286719.3286722

1 INTRODUCTION
Video surveillance in public areas is the method of choice for deal-
ing with increasing requirements in crime prevention, to support
manhunts, as well as to generally increase the feeling of safety of
citizens. Recent examples include the Xueliang (sharp eyes) project
in China [4] or the city video surveillance system in Moscow [6].

Existing video surveillance approaches from both research and
practice, to the best of our knowledge, all send the collected video
data to private or public cloud backends for further analysis. This
way, the full benefits of the cloud such as inexpensive and scalable
compute power can be leveraged. Cloud-based video analysis, how-
ever, comes with its own set of problems, the most obvious one
being bandwidth limitations. Also, it strongly impairs privacy: First,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
M4IoT’18, December 10–11, 2018, Rennes, France
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6118-7/18/12. . . $15.00
https://doi.org/10.1145/3286719.3286722

cameras do not distinguish between persons of interest (PoI) and
innocent bystanders – all video data is indiscriminately sent to the
cloud. Second, once data has reached the cloud it is typically stored
indefinitely since storage is inexpensive. While we may trust cur-
rent governments to sensibly handle this data, history has taught
us that we can never know what future governments may look
like. Third, video data from a number of geo-distributed cameras
typically ends up in the same central data lake which facilitates
correlation of data sources. Such correlation, however, supports the
unfounded surveillance of private citizens including the creation
of extensive movement profiles.

Overall, this implies an inherent tradeoff between the citizens’
privacy and public safety goals. While some societies may opt for
the extremes, namely public video surveillance as described above
or no cameras at all, democratic consensus tends to choose a middle-
ground solution. Existing middleground solutions use, for instance,
secure multiparty computation [5] or embedded watermarks [9]
to protect privacy in the presence of video surveillance. Other ap-
proaches use machine learning and ’smart’ algorithms to detect
relevant situations in video streams, for instance, violence in a train
station or elderly people who have fallen in a nursing home [2]. All
these approaches still rely on cloud-based video analysis.

In this paper, we propose an alternative (or complementary) ap-
proach that uses the inherent geo-distribution of fog computing [1]
to provide privacy levels that do not exist in cloud-based scenarios
while still offering the functionality of a camera-supported digi-
tal manhunt. As contributions, we present the design of such a
system and report on the lessons we learned while prototypically
implementing said system.

The remainder of this paper is structured as follows: We describe
the design of our fog-based manhunt system and discuss how we
deal with the privacy tradeoff in section 2. Afterwards, in section 3,
we present our proof-of-concept implementation, before we discuss
related work in section 4 and our lessons learned in 5. Finally,
section 6 concludes with a summary and outlook.

2 SYSTEM DESIGN
Our overall goal is to provide another approach for public video
surveillance that enables law enforcement agencies to actively
search for PoIs while preserving the privacy of non-involved cit-
izens. For this purpose, we leverage the geo-distribution of fog
computing and analyze the video streams on the edge instead of
processing them in the cloud which avoids unnecessary collection
of video data in a central data lake. Only relevant video snippets
containing PoIs, which have to be explicitly specified and approved
beforehand, are sent to the cloud backend. In this section, we give an
overview of our system design, starting with a high-level overview
in section 2.1 before describing authorization schemes (section 2.2)

https://doi.org/10.1145/3286719.3286722
https://doi.org/10.1145/3286719.3286722
https://doi.org/10.1145/3286719.3286722

M4IoT’18, December 10–11, 2018, Rennes, France Martin Grambow, Jonathan Hasenburg, David Bermbach

Cloud Backend

Edge Device

Edge Device

User

Supervisor

1. Submit manhunt request

2. Approve manhunt request

3. Train PoI recognition model

4. Transmit to edge devices

5. Search for PoI

Figure 1: The Manhunt Creation Process

as well as face detection (section 2.3) and notification mechanisms
(section 2.4).

2.1 Architecture and Manhunt Process
In this section, we will first outline the general process of initiating
a manhunt before describing our overall system architecture and
the distribution of system components over cloud and edge.

Figure 1 summarizes and illustrates the complete manhunt pro-
cess: When a law enforcement agency needs to find a PoI, first, an
officer with user rights submits a manhunt request. Such a manhunt
request contains biometrical data about the PoI and also the area
where the PoI shall be searched for, i.e., which edge devices should
participate in the search. As required by the four-eyes principle,
the submitted request must then be approved by someone with
supervisor rights – this could be a higher ranking officer from an-
other department or it could require a court order. Finally, once the
request has been approved, a PoI recognition model is trained in
the cloud backend and transmitted to the specified edge devices.
These edge devices then actively search for PoIs in the video stream
from their local camera and send any video snippets containing a
PoI back to the cloud backend.

Figure 2 shows the overall architecture of our system: The central
component of our cloud backend is the Manhunt Manager which
controls the manhunt workflow and also provides a web frontend
to system users. In this workflow, the Manhunt Manager continu-
ously interacts with the Authorization Manager to assert proper
authentication, authorization, and non-repudiation in all substan-
tial workflow steps. To provide these guarantees, the Authorization
Manager builds on an immutable event log (audit trail) and a user
database; we will describe this in more detail in section 2.2. When
the AuthorizationManager has signaled that a manhunt request has
been approved, the Model Trainer component takes over: It stores
the photo set submitted along with the request in the PoI database
and then uses the photo set to train a facial recognition model that
can be distributed to edge devices. Once the model has been created,
the Manhunt Manager again verifies that the requested manhunt
has been correctly approved and then uses the Edge Manager to
distribute the model to all relevant edge devices.

Connected edge devices wait for new manhunt requests and
receive the facial recognition model containing the biometric data
of the respective PoI. This model is stored in the local PoI database
and is used within the Video Stream Processor. This component
continuously monitors the live video stream from the connected
camera and tries to match faces in the video stream to the models
stored in the PoI database. If the Video Stream Processor detects
and identifies a PoI, it creates a video snippet containing only the
subsequence where the PoI was visible, and reports an alert to the

Edge Device

Camera

Video Stream
Processor PoI

Notification
Service

Cloud Backend

Authorization
Manager

Manhunt
Manager

Log

Model
Trainer

User

PoI

Edge
Manager

Figure 2: While the cloud management handles the man-
hunt management, the video stream processing is done on
the edge devices exclusively

Notification Service. The Notification Service then forwards the
alert including the video footage and all available meta data to the
cloud backend where they can be accessed by authorized users
through the Manhunt Manager’s web frontend.

While not implemented in our proof-of-concept prototype, we
envision that the video stream should be buffered for a short period
of time on the edge device (e.g., for 24 to 72 hours) so that new
manhunt requests can also search in the near past. This also asserts
that video data remains accessible locally for a short period of time
in case an incident that creates a need for such data. While we
explicitly envision access to this buffer to be strictly local (e.g., via
a portable drive), the details of this buffering feature are not really
a technical design decision but rather need to be considered for the
tradeoff between privacy and public safety goals.

2.2 Authorization of Manhunts
Our design puts a strong focus on the protection of privacy and
tries to reduce opportunities for system abuse. Specifically, our
system design guarantees non-repudiation of executed actions,
ensures that manhunts are properly authorized, and all video data
remains inaccessible unless a PoI is contained in the respective
video frames. To achieve these goals, we use three mechanisms: a
role-based access control model, a four-eyes principle, and an audit
trail system based on an immutable event log.

Our role model consists of a user and a supervisor role: super-
visors can manage accounts and approve user actions; users can
upload biometric information of PoIs to the cloud backend and
request new manhunts. Of course, this needs to be combined with
proper authentication measures.

To avoid situations where a single person could start an un-
founded manhunt, we rely on a four-eyes process which guarantees
the participation of two different authorized users for initiating
a manhunt. For typical scenarios, we envision that the user who
initially creates the manhunt request will be a law enforcement
officer while the supervisor who approves the request should be
a court ordering the manhunt. Beyond the manhunt process, we
also rely on the four-eyes principle for actions such as management
of user accounts, edge devices, and all access to existing manhunt
data and notification results.

In most scenarios, the four-eyes principle should already suffice.
To provide additional protection, however, for cases where a user
and a supervisor have either been corrupted or cooperate, our
system design uses an audit trail to ensure non-repudiation for all
actions within the system. Although, malicious cooperation cannot
be avoided this way, the log asserts that such actions can at least

Public Video Surveillance: Using the Fog to Increase Privacy M4IoT’18, December 10–11, 2018, Rennes, France

be detected so that disciplinary or legal measures outside of our
system can be initiated.

2.3 Face Detection
As already outlined in section 2.1, we leverage the compute power of
the cloud to train a machine learning-based PoI recognition model
based on photos of the respective PoI. An alternative approach
might be to directly use the biometrical data stored in today’s
passports (and, thus, in government databases). The pretrained PoI
recognition model is then distributed to edge devices while the
cloud backend can continue to improve the model whenever new
information becomes available. Furthermore, edge devices typically
suffer from resource constraints so that analysis of the video stream
should be light in resource needs – this is easily possible with a
pretrained model.

There is one caveat though in this approach: The time to anal-
yse the video stream scales with the number of faces in the video
stream and the number of PoIs, i.e., in crowded places, edge de-
vices need more compute power or can only catch up with their
analysis during offpeak hours. This implies that there is a tradeoff
between timeliness of analysis results and the cost of providing the
necessary compute infrastructure – this tradeoff should be solved
as required by the respective use case. Furthermore, there is also
a large potential for optimization. For instance, two manhunt re-
quests could have different priorities or the video analysis could
start by tracing moving objects in a first analysis step and then
running face analysis on such objects only once in a second step.
This would help to avoid continuously reanalysing a person looking
straight at the camera for a long time and should, hence, reduce
the analysis load.

2.4 Notification Mechanisms
If an edge device recognizes a PoI in the video stream, multiple ac-
tions are possible. In our design, the Notification Service transmits
a video snippet of the corresponding image sequence to the cloud
backend. There, these snippets can only be accessed by authorized
users who are responsible for taking further action such as storing
the video snippet as evidence or notifying nearby police officers.
Moreover, the reported footage can also be added to the manhunt
picture set to further improve the PoI detection model if the recog-
nition is deemed correct. Our notification mechanism, however,
could easily be extended. Instead of (only) sending the notification
to the cloud backend, the system might also notify nearby officers
directly, stop train service on a particular subway line, or initiate
some other action based on a rule engine.

3 PROOF OF CONCEPT IMPLEMENTATION
To validate our system design and to demonstrate its practical
applicability, we implemented a proof of concept prototype. For
this, we emulated a public video surveillance environment utilizing
AWS cloud services as cloud backend and two Raspberry Pis with
attached cameras as connected edge devices.

In the cloud backend, most of our functionality is implemented as
AWS Lambda functions1 in combination with AWS API Gateway2

1aws.amazon.com/lambda
2aws.amazon.com/api-gateway

for access to all services. For the PoI recognition model, we used
the open source library OpenFace3 which is trained using the AWS
Batch4 service. All data and the web frontend are stored either in
AWS DynamoDB5 tables or AWS S36 buckets.

For authentication and authorization of users, we implemented
a role-based access control model using Lambda functions, JSON
Web Tokens7, and the external service provider Auth08 for the
assignment of tokens. Although this requires trust in external ser-
vices, we believe that this suffices for a proof of concept prototype.
For reasons of simplicity, we explicitly decided not to use an ex-
isting authorization system as our prototype only requires two
non-overlapping roles.

For the audit trail, we used a blockchain-like data structure
where log entries store SHA512 hashes of preceding entries in
combination with public/private key cryptography to sign each
entry. For communication between cloud backend and edge devices,
we used the AWS IoT9 framework which offers an as-a-service
implementation of MQTT10.

We have made our prototype including all installation scripts
and a more detailed documentation available as open source on
GitHub11.

4 RELATEDWORK
There are existing approaches in both fog computing in general
as well as privacy control for video surveillance. For instance, as
a general approach, Satyanarayanan et al. [7] propose to move
compute-intensive cognitive assistance tasks closer to the end user
by utilizing cloudlets. Their focus, though, is on performance gains.

Regarding privacy control, Erkin et al. [5] use secure multiparty
computation and implement a comparison protocol for encrypted
images to preserve privacy of uninvolved citizens. Chattopadhyay
et al. [3] propose to increase the privacy through invertible crypto-
graphic obscuration. In their approach, faces are encrypted with a
hardware chip directly in the camera. Winkler and Rinner [8] ex-
tend this approach with a digital signature to guarantee integrity of
the video stream. Bretthauer and Krempel [2] propose a system that
detects accidents in nursing homes and only forwards the video
stream to authorized employees when such an incident occurs.
Zhang et al. [9] propose a system for video surveillance in the work
place. Their approach recognizes personnel in the video stream
and digitally removes them while retaining all non-authorized
personnel. This way, privacy of employees in a work place can
be preserved while still monitoring for unauthorized access. Our
approach leveraging the geo-distribution of fog computing is an
alternative approach which addresses a slightly different use case
but which could also complement some of the other approaches,
e.g., the one by Zhang et al. [9].

3cmusatyalab.github.io/openface/
4aws.amazon.com/batch
5aws.amazon.com/dynamodb
6aws.amazon.com/s3
7jwt.io
8auth0.com
9aws.amazon.com/iot
10mqtt.org
11github.com/OpenFogStack/PublicVideoSurveillance

M4IoT’18, December 10–11, 2018, Rennes, France Martin Grambow, Jonathan Hasenburg, David Bermbach

5 LESSONS LEARNED AND DISCUSSION
As we have seen, it is indeed possible to find a middle ground
solution between public safety goals of a society and privacy of
citizens when using the geo-distribution of fog computing as the
key enabler. Our proposed system design, which makes use of the
fog computing paradigm effectively, shows that even small and
comparably cheap edge devices with cameras are able to record and
analyze video streams in a sufficiently good resolution to enable
face detection on the edge. This way, the privacy of inhabitants is
ensured as much as possible while still supporting camera-based
manhunt scenarios. During our implementation process, we also
encountered a number of challenges and problems:

First, the face detection algorithm requires as much footage
as possible from the PoI, as it is not possible to perform a reliable
recognition of subjects without a sufficiently high number of images
in a acceptable resolution. For a PoI where only a single photo may
exist, this is critical. We are, however, aware of ongoing research
work that aims to reduce training data sets.

Second, there is no standard tooling support and methods for the
roll-out process to edge devices, since fog computing is a relatively
new paradigm and there are not many applications yet. This makes
it a labor-intensive task to deploy a first version of a system to
edge devices. We can only recommend to roll-out an intelligent
update mechanism along with that first software version – other-
wise, every single software update will again result in a manual and
time-intensive deployment process. This also needs to account for
anything that happens in the cloud with regards to new software
versions, updated interfaces, etc.

Third, researchers tend to consider failure a corner case that
rarely happens. This is obviously driven by the observable stability
in today’s cloud services. In the context of edge devices, however,
this basic assumption should be reconsidered – we ran into a va-
riety of small problems and one out of three of our Raspberry Pi
edge devices suddenly overheated (while running a high but still
normal processing load) that it permanently failed. While this is
only a small sample size, it tells us to expect temporal (e.g., due to
network problems) or permanent outages of edge devices: It should
be obvious that a low budget device will usually not offer the same
level of stability as a standard server.

Finally – a minor thing – while MQTT does not limit the message
size, the AWS IoT service does, i.e., it is not possible to use video
snippets as payload. While this was straightforward to work around
(upload the video to AWS S3 and only send the S3 key via AWS
IoT), this may not always be as easy to circumvent in case of larger
IoT data payloads.

Besides these challenges, we also found a couple of possible op-
timizations for our design and proof of concept prototype. As face
detection is an expensive algorithm, it should not be run on every
single video frame. Instead, as already outlined above, it should
be triggered based on a new person entering the surveillance area
which should then be traced based on trajectories instead of re-
analysing the same face over and over again. Other optimizations
include compression before upload to the cloud or cropping irrele-
vant frame areas. Thus reducing the amount of data that is sent to
the cloud is a necessary requirement for deploying the system in

more bandwidth-constrained situations, e.g., in rural areas or dur-
ing music festivals where mobile networks tend to be overloaded.

6 CONCLUSION
Video surveillance in public areas is the method of choice for deal-
ing with increasing requirements in crime prevention, to support
manhunts, as well as to generally increase the feeling of safety
of citizens. Typically, though, this is done in a way that threatens
privacy of citizens. Existing research approaches partly address
this, e.g., through obfuscation of faces, but still collect all video data
in a central data lake. This, however, significantly simplifies the
correlation of data sets and, thus, unnecessarily endangers privacy
of citizens.

In this paper, we proposed an alternative but complementary
approach that leverages the inherent geo-distribution of fog com-
puting to preserve privacy while still supporting law enforcement
agencies through a digital manhunt feature. In our approach, law
enforcement agencies can createmanhunt requests for a specific PoI.
Using photos of the PoI, a facial recognition model is pretrained
in the cloud and then distributed to edge devices with attached
cameras. These edge devices then monitor the local video feed us-
ing the pretrained model to detect the PoI. Only when the PoI is
detected, the edge device uploads the respective video snippet to
the cloud and notifies the original manhunt requester. To avoid
misuse, our system follows the four-eyes principle and uses an
audit trail system to implement non-repudiation. To evaluate our
system design, we presented our proof of concept prototype using
AWS and Raspberry Pis as edge devices. In lab setups, we found
that even these comparatively cheap edge devices can provide a
reliable recognition of PoIs while improving privacy in comparison
to state-of-the-art cloud solutions.

ACKNOWLEDGMENTS
Wewould like to thank Jun-Zhe Lai, FlorianMuchow, Tobias Pfandzel-
ter, Calvin Schmidt, Florian Stanek, and Patrick Willmann who
prototypically implemented the proposed system design within the
scope of a master’s course.

REFERENCES
[1] David Bermbach, Frank Pallas, David Garcia Perez, Pierluigi Plebani, Maya Ander-

son, Ronen Kat, and Stefan Tai. 2018. A Research Perspective on Fog Computing.
In Proc. of ISYCC. Springer.

[2] Sebastian Bretthauer and Erik Krempel. 2014. Videomonitoring zur Sturzdetektion
und Alarmierung–Eine technische und rechtliche Analyse. Proc. of IRIS.

[3] Ankur Chattopadhyay and Terrance E Boult. 2007. Privacycam: a privacy preserv-
ing camera using uclinux on the blackfin dsp. In Proc. of CVPR. IEEE.

[4] E-Hualu. 2017. Xueliang Project Solution. Retrieved June 27, 2017 from http:
//www.ehualu.com/en/Article/index/id/841/aid/12508137

[5] Zekeriya Erkin, Martin Franz, Jorge Guajardo, Stefan Katzenbeisser, Inald La-
gendijk, and Tomas Toft. 2009. Privacy-preserving face recognition. In Proc. of
PETS. Springer.

[6] Zac Johnson. 2017. How Closed Circuit TV and Artificial Intelligence Are
Making Moscow Safer. Retrieved November 30, 2017 from https://tech.co/
how-cctv-ai-are-making-moscow-safer-2017-11

[7] Mahadev Satyanarayanan, Zhuo Chen, Kiryong Ha, Wenlu Hu, Wolfgang Richter,
and Padmanabhan Pillai. 2014. Cloudlets: at the leading edge of mobile-cloud
convergence. In Proc. of MobiCASE. IEEE.

[8] Thomas Winkler and Bernhard Rinner. 2010. Trustcam: Security and privacy-
protection for an embedded smart camera based on trusted computing. In Proc. of
AVSS. IEEE.

[9] Wei Zhang, Sen-Ching S Cheung, and Minghua Chen. 2005. Hiding privacy
information in video surveillance system. In Proc. of ICIP. IEEE.

http://www.ehualu.com/en/Article/index/id/841/aid/12508137
http://www.ehualu.com/en/Article/index/id/841/aid/12508137
https://tech.co/how-cctv-ai-are-making-moscow-safer-2017-11
https://tech.co/how-cctv-ai-are-making-moscow-safer-2017-11

	Abstract
	1 Introduction
	2 System Design
	2.1 Architecture and Manhunt Process
	2.2 Authorization of Manhunts
	2.3 Face Detection
	2.4 Notification Mechanisms

	3 Proof of Concept Implementation
	4 Related Work
	5 Lessons Learned and Discussion
	6 conclusion
	Acknowledgments
	References

